Abstract

Optical technological applications have upgraded polishing, including flat-surface polishing, to an extremely high level of geometrical precision. We deal with the application of this type of precision technology for the preparation of, e.g., silicon or fused-silica wafers that are thin compared to their diameter. To this end a standard optical polishing process using a double-sided polishing machine was modified by giving the polishing pad holder an adaptable curvature. By carefully choosing the process conditions 10-cm-diameter silicon and fused-silica wafers (500μm thickness) were obtained with a very small deviation from parallelism in the 0.01-μm range. The level of smoothness, surface and subsurface damage, was identical with that required for integrated-circuit processing.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mutz, Die Kunst des Metalldrehens bei den Römern (Birkh äuser Verlag, Basel, Switzerland, 1972).
  2. Ref. 1, Figs. 30 and 31.
  3. J. Haisma, E. Hugues, C. Babolat, “Realization of a bi-aspherical objective lens for the Philips Video Long Play system,” Opt. Lett. 4, 70–72 (1979).
    [CrossRef] [PubMed]
  4. J. Haisma, T. G. Gijsbers, “Optomechanics, an ultra-high-precision machining technique,” Philips Tech. Rev. 41, 285–289(1983/1984).
  5. J. J. M. Braat, “Aspheric surfaces: design and optical advantages,” Philips Tech. Rev. 41, 289–295 (1983/1984).
  6. J. Haisma, W. Mesman, J. M. Oomen, J. C. Wijn, “Fabrication, testing and application of highly accurate aspheric optical elements,” Philips Tech. Rev. 41, 296–303 (1983/1984).
  7. J. Haisma, “SOI technologies: their past, present and future; ESSDERC-1988,” J. Phys. (Paris) Colloq. 49(C4), supplement to issue 9, 3–12(1988).
    [CrossRef]
  8. J. Haisma, G. A C. M. Spierings, U. K P. Biermann, J. A. Pals, “Silicon-on-insulator, wafer bonding-wafer thinning; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
    [CrossRef]
  9. J. Haisma, Th. M. Michielsen, G. A. C. M. Spierings, “High-quality SOI by bonding of standard Si wafers and thinning by polishing techniques only,” Jpn. J. Appl. Phys. 28, L725–L726 (1989).
    [CrossRef]
  10. D. Visser, T. G. Gijsbers, R. A. M. Jorna, “Molds and measurements for replicated aspheric lenses for optical recording,” Appl. Opt. 24, 1848–1852 (1985).
    [CrossRef] [PubMed]
  11. U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology, and Applications (Electrochemical Society, Inc., Pennington, Phoenix, Az., 1992), Vol 92-7.
  12. T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Naka-zato, “Silicon wafer bonding mechanism for SOI structures,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
    [CrossRef]
  13. W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
    [CrossRef]
  14. A. F M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
    [CrossRef]
  15. J. Haisma, P. W. de Haas, F. J. H. M. van der Kruis, J. Vijfvinkel, “Method of manufacturing a plate having a plain main surface, method of manufacturing a plate having parallel main surfaces, and device suitable for implementing said methods,” European patent application no. 0,579,298, priority date 15June1992.

1991 (1)

W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
[CrossRef]

1990 (2)

A. F M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Naka-zato, “Silicon wafer bonding mechanism for SOI structures,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

1989 (2)

J. Haisma, G. A C. M. Spierings, U. K P. Biermann, J. A. Pals, “Silicon-on-insulator, wafer bonding-wafer thinning; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

J. Haisma, Th. M. Michielsen, G. A. C. M. Spierings, “High-quality SOI by bonding of standard Si wafers and thinning by polishing techniques only,” Jpn. J. Appl. Phys. 28, L725–L726 (1989).
[CrossRef]

1988 (1)

J. Haisma, “SOI technologies: their past, present and future; ESSDERC-1988,” J. Phys. (Paris) Colloq. 49(C4), supplement to issue 9, 3–12(1988).
[CrossRef]

1985 (1)

1979 (1)

Abe, T.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Naka-zato, “Silicon wafer bonding mechanism for SOI structures,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology, and Applications (Electrochemical Society, Inc., Pennington, Phoenix, Az., 1992), Vol 92-7.

Babolat, C.

Baumgart, H.

W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
[CrossRef]

Biermann, U. K P.

J. Haisma, G. A C. M. Spierings, U. K P. Biermann, J. A. Pals, “Silicon-on-insulator, wafer bonding-wafer thinning; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

Braat, J. J. M.

J. J. M. Braat, “Aspheric surfaces: design and optical advantages,” Philips Tech. Rev. 41, 289–295 (1983/1984).

de Haas, P. W.

J. Haisma, P. W. de Haas, F. J. H. M. van der Kruis, J. Vijfvinkel, “Method of manufacturing a plate having a plain main surface, method of manufacturing a plate having parallel main surfaces, and device suitable for implementing said methods,” European patent application no. 0,579,298, priority date 15June1992.

de Kock, A. J. R.

W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
[CrossRef]

Gijsbers, T. G.

D. Visser, T. G. Gijsbers, R. A. M. Jorna, “Molds and measurements for replicated aspheric lenses for optical recording,” Appl. Opt. 24, 1848–1852 (1985).
[CrossRef] [PubMed]

J. Haisma, T. G. Gijsbers, “Optomechanics, an ultra-high-precision machining technique,” Philips Tech. Rev. 41, 285–289(1983/1984).

Gösele, U.

U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology, and Applications (Electrochemical Society, Inc., Pennington, Phoenix, Az., 1992), Vol 92-7.

Haisma, J.

J. Haisma, Th. M. Michielsen, G. A. C. M. Spierings, “High-quality SOI by bonding of standard Si wafers and thinning by polishing techniques only,” Jpn. J. Appl. Phys. 28, L725–L726 (1989).
[CrossRef]

J. Haisma, G. A C. M. Spierings, U. K P. Biermann, J. A. Pals, “Silicon-on-insulator, wafer bonding-wafer thinning; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

J. Haisma, “SOI technologies: their past, present and future; ESSDERC-1988,” J. Phys. (Paris) Colloq. 49(C4), supplement to issue 9, 3–12(1988).
[CrossRef]

J. Haisma, T. G. Gijsbers, “Optomechanics, an ultra-high-precision machining technique,” Philips Tech. Rev. 41, 285–289(1983/1984).

J. Haisma, W. Mesman, J. M. Oomen, J. C. Wijn, “Fabrication, testing and application of highly accurate aspheric optical elements,” Philips Tech. Rev. 41, 296–303 (1983/1984).

J. Haisma, E. Hugues, C. Babolat, “Realization of a bi-aspherical objective lens for the Philips Video Long Play system,” Opt. Lett. 4, 70–72 (1979).
[CrossRef] [PubMed]

U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology, and Applications (Electrochemical Society, Inc., Pennington, Phoenix, Az., 1992), Vol 92-7.

J. Haisma, P. W. de Haas, F. J. H. M. van der Kruis, J. Vijfvinkel, “Method of manufacturing a plate having a plain main surface, method of manufacturing a plate having parallel main surfaces, and device suitable for implementing said methods,” European patent application no. 0,579,298, priority date 15June1992.

Huethorst, J. A. M.

A. F M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

Hugues, E.

Jiang, B-L.

W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
[CrossRef]

Jorna, R. A. M.

Leenaars, A. F M.

A. F M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

Maszara, W. P.

W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
[CrossRef]

Mesman, W.

J. Haisma, W. Mesman, J. M. Oomen, J. C. Wijn, “Fabrication, testing and application of highly accurate aspheric optical elements,” Philips Tech. Rev. 41, 296–303 (1983/1984).

Michielsen, Th. M.

J. Haisma, Th. M. Michielsen, G. A. C. M. Spierings, “High-quality SOI by bonding of standard Si wafers and thinning by polishing techniques only,” Jpn. J. Appl. Phys. 28, L725–L726 (1989).
[CrossRef]

Mutz, A.

A. Mutz, Die Kunst des Metalldrehens bei den Römern (Birkh äuser Verlag, Basel, Switzerland, 1972).

Naka-zato, Y.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Naka-zato, “Silicon wafer bonding mechanism for SOI structures,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

Oomen, J. M.

J. Haisma, W. Mesman, J. M. Oomen, J. C. Wijn, “Fabrication, testing and application of highly accurate aspheric optical elements,” Philips Tech. Rev. 41, 296–303 (1983/1984).

Pals, J. A.

J. Haisma, G. A C. M. Spierings, U. K P. Biermann, J. A. Pals, “Silicon-on-insulator, wafer bonding-wafer thinning; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

Rozgonyi, G. A.

W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
[CrossRef]

Schmidt, M. A.

U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology, and Applications (Electrochemical Society, Inc., Pennington, Phoenix, Az., 1992), Vol 92-7.

Spierings, G. A C. M.

J. Haisma, G. A C. M. Spierings, U. K P. Biermann, J. A. Pals, “Silicon-on-insulator, wafer bonding-wafer thinning; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

Spierings, G. A. C. M.

J. Haisma, Th. M. Michielsen, G. A. C. M. Spierings, “High-quality SOI by bonding of standard Si wafers and thinning by polishing techniques only,” Jpn. J. Appl. Phys. 28, L725–L726 (1989).
[CrossRef]

Takei, T.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Naka-zato, “Silicon wafer bonding mechanism for SOI structures,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

Uchiyama, A.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Naka-zato, “Silicon wafer bonding mechanism for SOI structures,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

van der Kruis, F. J. H. M.

J. Haisma, P. W. de Haas, F. J. H. M. van der Kruis, J. Vijfvinkel, “Method of manufacturing a plate having a plain main surface, method of manufacturing a plate having parallel main surfaces, and device suitable for implementing said methods,” European patent application no. 0,579,298, priority date 15June1992.

van Oekel, J. J.

A. F M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

Vijfvinkel, J.

J. Haisma, P. W. de Haas, F. J. H. M. van der Kruis, J. Vijfvinkel, “Method of manufacturing a plate having a plain main surface, method of manufacturing a plate having parallel main surfaces, and device suitable for implementing said methods,” European patent application no. 0,579,298, priority date 15June1992.

Visser, D.

Wijn, J. C.

J. Haisma, W. Mesman, J. M. Oomen, J. C. Wijn, “Fabrication, testing and application of highly accurate aspheric optical elements,” Philips Tech. Rev. 41, 296–303 (1983/1984).

Yamada, A.

W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
[CrossRef]

Yoshizawa, K.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Naka-zato, “Silicon wafer bonding mechanism for SOI structures,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

W. P. Maszara, B-L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart, A. J. R. de Kock, “Role of surface morphology in wafer bonding,” J. Appl. Phys. 69, 257–260 (1991).
[CrossRef]

J. Phys. (Paris) Colloq. (1)

J. Haisma, “SOI technologies: their past, present and future; ESSDERC-1988,” J. Phys. (Paris) Colloq. 49(C4), supplement to issue 9, 3–12(1988).
[CrossRef]

Jpn. J. Appl. Phys. (3)

J. Haisma, G. A C. M. Spierings, U. K P. Biermann, J. A. Pals, “Silicon-on-insulator, wafer bonding-wafer thinning; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

J. Haisma, Th. M. Michielsen, G. A. C. M. Spierings, “High-quality SOI by bonding of standard Si wafers and thinning by polishing techniques only,” Jpn. J. Appl. Phys. 28, L725–L726 (1989).
[CrossRef]

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Naka-zato, “Silicon wafer bonding mechanism for SOI structures,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

Langmuir (1)

A. F M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

Opt. Lett. (1)

Philips Tech. Rev. (3)

J. Haisma, T. G. Gijsbers, “Optomechanics, an ultra-high-precision machining technique,” Philips Tech. Rev. 41, 285–289(1983/1984).

J. J. M. Braat, “Aspheric surfaces: design and optical advantages,” Philips Tech. Rev. 41, 289–295 (1983/1984).

J. Haisma, W. Mesman, J. M. Oomen, J. C. Wijn, “Fabrication, testing and application of highly accurate aspheric optical elements,” Philips Tech. Rev. 41, 296–303 (1983/1984).

Other (4)

J. Haisma, P. W. de Haas, F. J. H. M. van der Kruis, J. Vijfvinkel, “Method of manufacturing a plate having a plain main surface, method of manufacturing a plate having parallel main surfaces, and device suitable for implementing said methods,” European patent application no. 0,579,298, priority date 15June1992.

A. Mutz, Die Kunst des Metalldrehens bei den Römern (Birkh äuser Verlag, Basel, Switzerland, 1972).

Ref. 1, Figs. 30 and 31.

U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology, and Applications (Electrochemical Society, Inc., Pennington, Phoenix, Az., 1992), Vol 92-7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Setup for one-sided precision polishing of a silicon wafer.

Fig. 2
Fig. 2

Setup of a two-sided precision polishing machine in standard use in optics: (1) lower polishing pad holder, (2) upper polishing pad holder, (3) wafers.

Fig. 3
Fig. 3

Transition from a concave to convex surface as a definition for flatness.

Fig. 4
Fig. 4

Enantiomorphic shape.

Fig. 5
Fig. 5

Definition of the enantiomorphic shape as a transition from an oversized to an undersized condition for a curved body.

Fig. 6
Fig. 6

Definition of the enantiomorphic shape as a transition from an oversized to an undersized condition for a flat body.

Fig. 7
Fig. 7

Basic setup of a polishing machine with fixed pad holders, having one flat and one adjustable curvature pad holder.

Fig. 8
Fig. 8

Fizeau interferometric measurement of an almost parallel (≈ 10-nm) silicon wafer, directly bonded to a flat optical plate of ultralow-expansion glass. Diameter optical flat 150 mm.

Fig. 9
Fig. 9

Talyrond measurement of an almost parallel silicon wafer, directly bonded on top of an ultralow-expansion optical flat; outer circle, ultralow-expansion flat; inner circle, silicon wafer.

Fig. 10
Fig. 10

Cross-sectional flatness view of an optical flat made of ultralow-expansion glass, having as reference a Zerodur gauge with a 16-nm deviation from absolute flatness.

Fig. 11
Fig. 11

Cross-sectional flatness view of an optical flat having on top a parallel silicon wafer directly bonded to it. The reference used is a Zerodur gauge having a 16-nm deviation from absolute flatness.

Fig. 12
Fig. 12

Series of TESA probe measurements of the deviation from parallelism as a function of diameter of a fused-silica wafer; running index, curvature of the adjusted pad holder.

Fig. 13
Fig. 13

Series of TESA probe measurements of the deviation from parallelism as a function of diameter of a silicon wafer; running index, curvature of the adjusted pad holder.

Fig. 14
Fig. 14

Silicon-wafer preform preparation: deviation from parallelism of double-sided ground silicon waters; contact-probe measurement.

Fig. 15
Fig. 15

Set of silicon (substrate) wafers prepared by double-sided polishing between pad holders having curvature adjustment. Contact-probe measurement.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R q = R m s = σ = ( 1 N i = 0 N 1 Y i 2 ) 1 / 2 ,

Metrics