Abstract

The results of joint transform correlation with photoanisotropic organic materials are presented. The materials' dynamic holographic recording capability and high resolution permit the operation of such a correlator in real time. Both theoretical and experimental results show that the photoanisotropic properties cause a dependence of the correlation output on the state of the polarization of the readout beam and can be used to produce an output polarization orthogonal to the input, which permits polarization filtering to be used, greatly increasing the signal-to-noise ratio. The effect of the saturation of the nonlinearity on correlation performance is investigated and is shown to be able to improve correlator recognition and discrimination. The correlation results of binary images and of a high-resolution synthetic-aperture radar image are presented, demonstrating excellent optical quality, nonlinear edge enhancement, and real-time operation.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  2. F. T. S. Yu, S. Wu, S. Rajan, D. A. Gregory, “Compact joint transform correlator with a thick photorefractive crystal,” Appl. Opt. 31, 2416–2418 (1992).
    [CrossRef] [PubMed]
  3. J. Yu, F. Mok, D. Psaltis, “Capacity of optical correlators,” in Spatial Light Modulators and Applications II, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.825, 128–135 (1987).
  4. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. I. A new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  5. J. J. A. Couture, R. A. Lessard, “Modulation transfer function measurements for thin layers of azo dyes in PVA matrix used as an optical recording material,” Appl. Opt. 27, 3368–3374 (1988).
    [CrossRef] [PubMed]
  6. T. Huang, S. Weaver, S. Blair, K. H. Wagner, “Photoanisotropic organic volume holograms for spatial light modulation,” in Spatial Light Modulators and Applications, in Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 214–217.
  7. A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I. Model of the system,” Opt. Spektrosk. 31, 295–299 (1971).
  8. L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photo-induced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
    [CrossRef]
  9. T. Huang, K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
    [CrossRef]
  10. S. D. Kakichashvili, “Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium,” Sov. J. Quantum Electron. 13, 1317–1319 (1983).
    [CrossRef]
  11. C. H. Kwak, J. T. Kim, S. S. Lee, “Scalar and vector holographic gratings recorded in a photoanisotropic amorphous As2S3 thin film,” Opt. Lett. 13, 437–439 (1988).
    [CrossRef] [PubMed]
  12. T. Huang, K H. Wagner, “Coupled mode analysis of polarization volume hologram,” submitted to IEEE J. Quantum Electron.
  13. C. X. G. Gu, “Optical neural networks using volume holograms.” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1990).
  14. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
    [CrossRef]
  15. R. A. Athale, K. Raj, “Fourier-plane filtering by a thick grating: a space–bandwidth analysis,” Opt. Lett. 17, 880–882 (1992).
    [CrossRef] [PubMed]
  16. S. D. Kakichashvili, “Regularity in photoanisotropic phenomena,” Opt. Spektrosk. 52, 191–194 (1982).
  17. L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Polarization-preserving wave-front reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
    [CrossRef] [PubMed]
  18. T. Huang, K. H. Wagner, “Photoanisotropic incoherent to coherent optical conversion,” Appl. Opt. 32, 1888–1900 (1993).
    [CrossRef] [PubMed]
  19. T. Huang, K. H. Wagner, “Effect of saturation on diffraction from dynamic photoanisotropic organic materials,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774, 160–168 (1992).
  20. I. B. Joseph, Y. Silberberg, “Real time holography through triplet state absorption in organic dyes,” Opt. Commun. 41, 455–458 (1982).
    [CrossRef]
  21. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
    [CrossRef] [PubMed]
  22. B. Javidi, Q. Tang, D. A. Gregory, T. D. Hudson, “Experiments on nonlinear joint transform correlator using an optically addressed spatial light modulator in the Fourier plane,” Appl. Opt. 30, 1772–1776 (1991).
    [CrossRef] [PubMed]

1993

1992

1991

1989

1988

1984

1983

S. D. Kakichashvili, “Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium,” Sov. J. Quantum Electron. 13, 1317–1319 (1983).
[CrossRef]

1982

S. D. Kakichashvili, “Regularity in photoanisotropic phenomena,” Opt. Spektrosk. 52, 191–194 (1982).

I. B. Joseph, Y. Silberberg, “Real time holography through triplet state absorption in organic dyes,” Opt. Commun. 41, 455–458 (1982).
[CrossRef]

1976

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

1971

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I. Model of the system,” Opt. Spektrosk. 31, 295–299 (1971).

1966

Athale, R. A.

Blair, S.

T. Huang, S. Weaver, S. Blair, K. H. Wagner, “Photoanisotropic organic volume holograms for spatial light modulation,” in Spatial Light Modulators and Applications, in Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 214–217.

Couture, J. J. A.

Dragostinova, V.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photo-induced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Polarization-preserving wave-front reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
[CrossRef] [PubMed]

Feit, M. D.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Fleck, J. A.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Goodman, J. W.

Gregory, D. A.

Gu, C. X. G.

C. X. G. Gu, “Optical neural networks using volume holograms.” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1990).

Huang, T.

T. Huang, K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
[CrossRef]

T. Huang, K. H. Wagner, “Photoanisotropic incoherent to coherent optical conversion,” Appl. Opt. 32, 1888–1900 (1993).
[CrossRef] [PubMed]

T. Huang, S. Weaver, S. Blair, K. H. Wagner, “Photoanisotropic organic volume holograms for spatial light modulation,” in Spatial Light Modulators and Applications, in Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 214–217.

T. Huang, K H. Wagner, “Coupled mode analysis of polarization volume hologram,” submitted to IEEE J. Quantum Electron.

T. Huang, K. H. Wagner, “Effect of saturation on diffraction from dynamic photoanisotropic organic materials,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774, 160–168 (1992).

Hudson, T. D.

Javidi, B.

Joseph, I. B.

I. B. Joseph, Y. Silberberg, “Real time holography through triplet state absorption in organic dyes,” Opt. Commun. 41, 455–458 (1982).
[CrossRef]

Kakichashvili, S. D.

S. D. Kakichashvili, “Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium,” Sov. J. Quantum Electron. 13, 1317–1319 (1983).
[CrossRef]

S. D. Kakichashvili, “Regularity in photoanisotropic phenomena,” Opt. Spektrosk. 52, 191–194 (1982).

Kim, J. T.

Kwak, C. H.

Lee, S. S.

Lessard, R. A.

Makushenko, A. M.

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I. Model of the system,” Opt. Spektrosk. 31, 295–299 (1971).

Markovsky, P.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photo-induced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

Mateva, N.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photo-induced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

Mok, F.

J. Yu, F. Mok, D. Psaltis, “Capacity of optical correlators,” in Spatial Light Modulators and Applications II, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.825, 128–135 (1987).

Morris, J. R.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Neporent, B. S.

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I. Model of the system,” Opt. Spektrosk. 31, 295–299 (1971).

Nikolova, L.

Psaltis, D.

J. Yu, F. Mok, D. Psaltis, “Capacity of optical correlators,” in Spatial Light Modulators and Applications II, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.825, 128–135 (1987).

Raj, K.

Rajan, S.

Silberberg, Y.

I. B. Joseph, Y. Silberberg, “Real time holography through triplet state absorption in organic dyes,” Opt. Commun. 41, 455–458 (1982).
[CrossRef]

Stolbova, O. V.

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I. Model of the system,” Opt. Spektrosk. 31, 295–299 (1971).

Tang, Q.

Todorov, T.

Tomova, N.

Wagner, K H.

T. Huang, K H. Wagner, “Coupled mode analysis of polarization volume hologram,” submitted to IEEE J. Quantum Electron.

Wagner, K. H.

T. Huang, K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
[CrossRef]

T. Huang, K. H. Wagner, “Photoanisotropic incoherent to coherent optical conversion,” Appl. Opt. 32, 1888–1900 (1993).
[CrossRef] [PubMed]

T. Huang, S. Weaver, S. Blair, K. H. Wagner, “Photoanisotropic organic volume holograms for spatial light modulation,” in Spatial Light Modulators and Applications, in Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 214–217.

T. Huang, K. H. Wagner, “Effect of saturation on diffraction from dynamic photoanisotropic organic materials,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774, 160–168 (1992).

Weaver, C. S.

Weaver, S.

T. Huang, S. Weaver, S. Blair, K. H. Wagner, “Photoanisotropic organic volume holograms for spatial light modulation,” in Spatial Light Modulators and Applications, in Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 214–217.

Wu, S.

Yu, F. T. S.

Yu, J.

J. Yu, F. Mok, D. Psaltis, “Capacity of optical correlators,” in Spatial Light Modulators and Applications II, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.825, 128–135 (1987).

Appl. Opt.

Appl. Phys.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

J. Mod. Opt.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, N. Mateva, “Optically controlled photo-induced birefringence in photoanisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

I. B. Joseph, Y. Silberberg, “Real time holography through triplet state absorption in organic dyes,” Opt. Commun. 41, 455–458 (1982).
[CrossRef]

Opt. Lett.

Opt. Spektrosk.

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I. Model of the system,” Opt. Spektrosk. 31, 295–299 (1971).

S. D. Kakichashvili, “Regularity in photoanisotropic phenomena,” Opt. Spektrosk. 52, 191–194 (1982).

Sov. J. Quantum Electron.

S. D. Kakichashvili, “Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium,” Sov. J. Quantum Electron. 13, 1317–1319 (1983).
[CrossRef]

Other

T. Huang, K. H. Wagner, “Effect of saturation on diffraction from dynamic photoanisotropic organic materials,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1774, 160–168 (1992).

T. Huang, K H. Wagner, “Coupled mode analysis of polarization volume hologram,” submitted to IEEE J. Quantum Electron.

C. X. G. Gu, “Optical neural networks using volume holograms.” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1990).

J. Yu, F. Mok, D. Psaltis, “Capacity of optical correlators,” in Spatial Light Modulators and Applications II, U. Efron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.825, 128–135 (1987).

T. Huang, S. Weaver, S. Blair, K. H. Wagner, “Photoanisotropic organic volume holograms for spatial light modulation,” in Spatial Light Modulators and Applications, in Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 214–217.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 3
Fig. 3

Relationship between parameter m and sample thickness d.

Fig. 4
Fig. 4

Bragg selectivity of a thick hologram: thickness d = 2560λ1, X = 683λ1, focal length f1 = 16384λ1, and Δnd = 0.3.

Fig. 5
Fig. 5

Correlation output versus readout angle from a thin hologram: thickness d = 256λ1, X = 683λ1, focal length f1 = 16384λ1, and Δnd = 0.3.

Fig. 6
Fig. 6

(a) Spatial position of correlation inputs in real space, (b) grating vectors in momentum space.

Fig. 7
Fig. 7

Variation of the SBWP of the object Na with ratios X/2Wb and Wb/Wa: L = 25 mm, d = 100 μm, m = 2, n0 = 1.54, λ1 = 0.514 μm, and λ2 = 0.6328 μm.

Fig. 8
Fig. 8

Variation of the SBWP of the test scene Nb with ratios X/2Wb and Wb/Wa: L = 25 mm, d = 100 μm, m = 2, n0 = 1.54, λ1 = 0.514 μm, and λ2 = 0.6328 μm.

Fig. 9
Fig. 9

Real-time JTC experimental setup: M's, mirrors; BF's, beam expanders and spatial fiters; D's, diaphragms; CL's, collimation lenses; LP's, linear polarizers; O, objects to be correlated; L1, Fourier-transform lens; ND filter, neutral-density filter.

Fig. 10
Fig. 10

Dependence of correlation output on the polarization direction of the readout beam: (a) objects used for correlation; (b)–(e) correlation outputs at θ = 0°, θ = 30°, θ = 60°, and θ = 90°, respectively.

Fig. 11
Fig. 11

Correlation result of a high-resolution SAR image: (a) SAR images of Los Angeles airport (right) and entire Los Angeles area (left), (b) correlation output.

Fig. 12
Fig. 12

Experimental correlation output of two identical circular apertures clearly indicating nonlinear JTC behavior: (a) input object, (b) a two-dimensional photograph, (c) a three-dimensional surface representation.

Fig. 13
Fig. 13

Theoretical simulation for correlation output of two identical circular apertures: (a) for a nonlinear correlator with saturation, (b) for a linear correlator with no saturation.

Fig. 14
Fig. 14

Correlation merits for the experimental nonlinear JTC implemented in MO–PVA with Is ≃ 1.4 mW/cm2: (a) normalized correlation-peak intensity, (b) peak-to-highest-sidelobe ratio, (c) averaged 3-dB width of the correlation peak.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

F ( u , υ , z ) = D exp [ i k 1 ( f 1 + z ) ] i λ 1 f 1 { exp [ i π ( X 2 4 Δ λ 1 f 1 2 X z f 1 u ) ] × a ( x , y ) exp [ i π Δ λ 1 f 1 2 ( x 2 + y 2 ) ] × exp { i 2 π [ x ( X 2 Δ λ 1 f 1 2 + z f 1 u ) + y z f 1 υ ] } × d x d y + exp ( i π { [ ( X 2 + x 0 ) 2 + y 0 2 ] × Δ λ 1 f 1 2 + 2 ( X 2 + x 0 ) z f 1 u + 2 y 0 z f 1 υ } ) × a ( x , y ) exp [ i π Δ λ 1 f 1 2 ( x 2 + y 2 ) ] × exp ( i 2 π { x [ ( X 2 + x 0 ) Δ λ 1 f 1 2 + z f 1 u ] + y ( y 0 Δ λ 1 f 1 2 + z f 1 υ ) } ) d x d y + exp [ i π ( X 2 4 Δ λ 1 f 1 2 + X z f 1 u ) ] × b ( x , y ) exp [ i π Δ λ 1 f 1 2 ( x 2 + y 2 ) ] × exp { i 2 π [ x ( X Δ 2 λ 1 f 1 2 + z f 1 u ) + y z f 1 υ ] } d x d y } ,
| π λ 1 Δ f 1 2 ( x 2 + y 2 ) max | 1 .
f 1 W a 2 ( π d / λ 1 ) 1 / 2 ,
I ( x f , y f , z ) = 0 c n 0 2 | D | 2 ( λ 1 f 1 ) 2 [ | A ( X 2 Δ λ 1 f 1 2 + x f λ 1 f 1 , y f λ 1 f 1 ) | 2 + | A [ ( X 2 + x 0 ) Δ λ 1 f 1 2 + x f λ 1 f 1 , y 0 Δ λ 1 f 1 2 + y f λ 1 f 1 ] | 2 + A ( X 2 Δ λ 1 f 1 2 + x f λ 1 f 1 , y f λ 1 f 1 ) × A * [ ( X 2 + x 0 ) Δ λ 1 f 1 2 + x f λ 1 f 1 , y 0 Δ λ 1 f 1 2 + y f λ 1 f 1 ] × exp ( i 2 π { Δ 2 λ 1 f 1 2 [ x 0 ( X + x 0 ) + y 0 2 ] + ( X + x 0 ) x f λ 1 f 1 + y 0 y f λ 1 f 1 } ) + c . c . ] ,
δ x = ( X 2 + x 0 ) Δ f 1 .
f 1 > 1 2 [ d λ 1 W a ( X + W b ) ] 1 / 2 .
I ( x f , y f , x ) 0 c n 0 | D | 2 ( λ 1 f 1 ) 2 | A ( x f λ 1 f 1 , y f λ 1 f 1 ) | 2 × [ 1 + cos ( 2 π { z f 1 2 λ 1 f 1 2 [ x 0 ( X + x 0 ) + y 0 2 ] + ( X + x 0 ) x f λ 1 f 1 + y 0 y f λ 1 f 1 } ) ] .
f 1 > W a 2 ( d λ 1 ) 1 / 2 [ ( X + W b W a ) 1 / 2 + m ( π ) 1 / 2 ] ,
f 1 > { d 2 n 0 λ 1 [ X W b 2 + λ 2 λ 1 ( X + W b 2 ) 2 + ( X + W b ) W a ] } 1 / 2 ,
N a = L ( λ 1 d ) 1 / 2 1 { [ ( X W a ) + ( W b W a ) ] 1 / 2 + m ( π ) 1 / 2 } .
N a = L ( λ 1 d ) 1 / 2 1 ( 2 n 0 ) 1 / 2 [ 1 2 X W a W b W a + λ 2 λ 1 ( X W a + W b 2 W a ) 2 + ( X W a + W b W a ) ] 1 / 2 .
Δ n ̂ x = κ ̂ I ( x f , y f ) ,
Δ n ̂ y = κ ̂ I ( x f , y f ) .
T ̂ ( x f , y f ) = exp ( i k 2 n ̂ 0 d ) × [ 1 + i k 2 d κ ̂ I ( x f , y f ) 0 0 1 + i k 2 d κ ̂ I ( x f , y f ) ] ,
[ d x ( x f , y f ) d y ( x f , y f ) ] = r exp ( i k 2 n ̂ 0 d ) [ [ 1 + i k 2 d κ ̂ I ( x f , y f ) ] cos θ [ 1 + i k 2 d κ ̂ I ( x f , y f ) ] sin θ ] .
C 1 ( x i , y i ) [ κ ̂ cos θ κ ̂ sin θ ] a ( α x i , α y i ) a * ( α x i X x 0 , α y i y 0 ) ,
C 2 ( x i , y i ) [ κ ̂ cos θ κ ̂ sin θ ] a ( α x i , α y i ) a * ( α x i + X + x 0 , α y i + y 0 ) ,
M θ = [ sin 2 θ sin θ cos θ sin θ cos θ cos 2 θ ] .
[ d x ( x f , y f ) d y ( x f , y f ) ] = i k 2 d I ( x f , y f ) r exp ( i k 2 n ̂ 0 d ) × [ sin 2 θ cos θ ( κ ̂ κ ̂ ) cos 2 θ sin θ ( κ ̂ κ ̂ ) ] .

Metrics