Abstract

We built and tested one of the key components of a free-space holographically interconnected stored-program optoelectronic computer: a counter. The counter is constructed with 1-ns-latency optoelectronic nor gates and is interconnected with holographic optical elements. Two synchronization methods were also demonstrated: the gate-and-strobe method and the time-of-flight method. These counters represent prototypical optoelectronic finite-state controllers. They were developed to demonstrate the feasibility of providing optoelectronic controllers for optoelectronic processors.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).
  2. G. C. Marsden, A. V. Krishnamoorthy, S. Esener, S. H. Lee, “Dual-scale topology optoelectronic processor,” Opt. Lett. 16, 1970–1972 (1991).
    [CrossRef] [PubMed]
  3. M. J. Murdocca, A Digital Design Methodology for Optical Computing (MIT Press, Cambridge, Mass., 1990), pp. 43–58.
  4. A. Huang, “Computational origami: the folding of circuits and systems,” Appl. Opt. 31, 5419–5422 (1992).
    [CrossRef] [PubMed]
  5. M. E. Prise, N. Stribel, M. M. Downs, “Optical considerations in the design of digital optical computers,” Opt. Quantum Electron. 30, 49–77 (1988).
    [CrossRef]
  6. See Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991);Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993);Photonics in Switching, 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993).
  7. V. P. Heuring, “An optoelectronic computer graphics display processor, OGDP,” OCS Tech. Rep. 94-14 (Optoelectronic Computing Systems Center, University of Colorado, Boulder, Boulder, Colo., 1993).
  8. V. C. Hamacher, Z. G. Vranesic, S. Zaki, Computer Organization (McGraw-Hill, New York, 1992), pp. 182.
  9. H. Elion, V. Morozov, Optoelectronic Switching Systems in Telecommunication and Computers (Dekker, New York, 1984), Vol. 1, pp. 194–196.
  10. Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
    [CrossRef]
  11. J. P. Pratt, V. P. Heuring, “Delay synchronization in time-of-flight optical systems,” Appl. Opt. 31, 2430–2437 (1992).
    [CrossRef] [PubMed]
  12. S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
    [CrossRef]
  13. T. Egawa, T. Jimbo, M. Umeno, “Monolithic integration of AlGaAs/GaAs MQW laser diode and GaAs MOSFET grown on Si using selective regrowth,” IEEE Photon. Technol. Lett. 4, 612–614 (1992).
    [CrossRef]
  14. Z. Kohavi, Switching Theory and Finite Automata (McGraw-Hill, New York, 1978), p. 280.
  15. V. Morozov, “Parallel optoelectronic counter: one more example of high efficiency free-space global interconnects problem,” OCS Tech. Rep. 94-15 (Optoelectronic Computing Systems Center, University of Colorado, Boulder, Boulder, Colo., 1994).
  16. H. F. Jordan, V. P. Heuring, “Time-multiplexed optical computers,” in Proceedings of the Conference on Supercomputing '91 (IEEE Computer Society Press, New York, 1991), pp. 370–378.
    [CrossRef]
  17. V. N. Morozov, W. T. Cathey, “Practical speed limits of free-space globally holographic interconnects: time skew, jitter, and turn-on delay,” Appl. Opt. 33, 1380–1390 (1994).
    [CrossRef] [PubMed]
  18. T. Main, R. J. Feuerstein, V. P. Heuring, H. F. Jordan, J. R. Feehrer, C. E. Love, “Implementation of a general purpose stored program digital optical computer,” Appl. Opt. 33, 1619–1628 (1994).
    [CrossRef] [PubMed]
  19. V. P. Heuring, H. F. Jordan, J. P. Pratt, “A bit serial architecture for optical computing,” Appl. Opt. 31, 3213–3224 (1992).
    [CrossRef] [PubMed]

1994

1992

V. P. Heuring, H. F. Jordan, J. P. Pratt, “A bit serial architecture for optical computing,” Appl. Opt. 31, 3213–3224 (1992).
[CrossRef] [PubMed]

A. Huang, “Computational origami: the folding of circuits and systems,” Appl. Opt. 31, 5419–5422 (1992).
[CrossRef] [PubMed]

Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
[CrossRef]

J. P. Pratt, V. P. Heuring, “Delay synchronization in time-of-flight optical systems,” Appl. Opt. 31, 2430–2437 (1992).
[CrossRef] [PubMed]

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
[CrossRef]

T. Egawa, T. Jimbo, M. Umeno, “Monolithic integration of AlGaAs/GaAs MQW laser diode and GaAs MOSFET grown on Si using selective regrowth,” IEEE Photon. Technol. Lett. 4, 612–614 (1992).
[CrossRef]

1991

1988

M. E. Prise, N. Stribel, M. M. Downs, “Optical considerations in the design of digital optical computers,” Opt. Quantum Electron. 30, 49–77 (1988).
[CrossRef]

Bowman, S.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Buller, G. S.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Cathey, W. T.

Craig, R. G. A.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Downs, M. M.

M. E. Prise, N. Stribel, M. M. Downs, “Optical considerations in the design of digital optical computers,” Opt. Quantum Electron. 30, 49–77 (1988).
[CrossRef]

Egawa, T.

T. Egawa, T. Jimbo, M. Umeno, “Monolithic integration of AlGaAs/GaAs MQW laser diode and GaAs MOSFET grown on Si using selective regrowth,” IEEE Photon. Technol. Lett. 4, 612–614 (1992).
[CrossRef]

Elion, H.

H. Elion, V. Morozov, Optoelectronic Switching Systems in Telecommunication and Computers (Dekker, New York, 1984), Vol. 1, pp. 194–196.

Esener, S.

Feehrer, J. R.

Feuerstein, R. J.

Hamacher, V. C.

V. C. Hamacher, Z. G. Vranesic, S. Zaki, Computer Organization (McGraw-Hill, New York, 1992), pp. 182.

Heuring, V. P.

T. Main, R. J. Feuerstein, V. P. Heuring, H. F. Jordan, J. R. Feehrer, C. E. Love, “Implementation of a general purpose stored program digital optical computer,” Appl. Opt. 33, 1619–1628 (1994).
[CrossRef] [PubMed]

V. P. Heuring, H. F. Jordan, J. P. Pratt, “A bit serial architecture for optical computing,” Appl. Opt. 31, 3213–3224 (1992).
[CrossRef] [PubMed]

J. P. Pratt, V. P. Heuring, “Delay synchronization in time-of-flight optical systems,” Appl. Opt. 31, 2430–2437 (1992).
[CrossRef] [PubMed]

V. P. Heuring, “An optoelectronic computer graphics display processor, OGDP,” OCS Tech. Rep. 94-14 (Optoelectronic Computing Systems Center, University of Colorado, Boulder, Boulder, Colo., 1993).

H. F. Jordan, V. P. Heuring, “Time-multiplexed optical computers,” in Proceedings of the Conference on Supercomputing '91 (IEEE Computer Society Press, New York, 1991), pp. 370–378.
[CrossRef]

Huang, A.

Jimbo, T.

T. Egawa, T. Jimbo, M. Umeno, “Monolithic integration of AlGaAs/GaAs MQW laser diode and GaAs MOSFET grown on Si using selective regrowth,” IEEE Photon. Technol. Lett. 4, 612–614 (1992).
[CrossRef]

Jordan, H. F.

Kawanishi, S.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
[CrossRef]

Kim, M. S.

Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
[CrossRef]

Kohavi, Z.

Z. Kohavi, Switching Theory and Finite Automata (McGraw-Hill, New York, 1978), p. 280.

Krishnamoorthy, A. V.

Lee, S. H.

Lee, Y. H.

Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
[CrossRef]

Liebenguth, R. E.

Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
[CrossRef]

Love, C. E.

Main, T.

Marsden, G. C.

McKnight, D.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Morozov, V.

H. Elion, V. Morozov, Optoelectronic Switching Systems in Telecommunication and Computers (Dekker, New York, 1984), Vol. 1, pp. 194–196.

V. Morozov, “Parallel optoelectronic counter: one more example of high efficiency free-space global interconnects problem,” OCS Tech. Rep. 94-15 (Optoelectronic Computing Systems Center, University of Colorado, Boulder, Boulder, Colo., 1994).

Morozov, V. N.

Murdocca, M. J.

M. J. Murdocca, A Digital Design Methodology for Optical Computing (MIT Press, Cambridge, Mass., 1990), pp. 43–58.

Nakagawa, K.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
[CrossRef]

Pawley, G. S.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Pratt, J. P.

Prise, M. E.

M. E. Prise, N. Stribel, M. M. Downs, “Optical considerations in the design of digital optical computers,” Opt. Quantum Electron. 30, 49–77 (1988).
[CrossRef]

Redmond, I. R.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Saruwatari, M.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
[CrossRef]

Shim, C. S.

Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
[CrossRef]

Smith, S. D.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Snowden, J. F.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Song, J. I.

Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
[CrossRef]

Stribel, N.

M. E. Prise, N. Stribel, M. M. Downs, “Optical considerations in the design of digital optical computers,” Opt. Quantum Electron. 30, 49–77 (1988).
[CrossRef]

Taghizadeh, M. R.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Takada, T.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
[CrossRef]

Takara, H.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
[CrossRef]

Tell, B.

Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
[CrossRef]

Tooley, F. A. P.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Umeno, M.

T. Egawa, T. Jimbo, M. Umeno, “Monolithic integration of AlGaAs/GaAs MQW laser diode and GaAs MOSFET grown on Si using selective regrowth,” IEEE Photon. Technol. Lett. 4, 612–614 (1992).
[CrossRef]

Vranesic, Z. G.

V. C. Hamacher, Z. G. Vranesic, S. Zaki, Computer Organization (McGraw-Hill, New York, 1992), pp. 182.

Walker, A. C.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Wherrett, B. S.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Yamabayashi, Y.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
[CrossRef]

Zaki, S.

V. C. Hamacher, Z. G. Vranesic, S. Zaki, Computer Organization (McGraw-Hill, New York, 1992), pp. 182.

Appl. Opt.

IEEE Photon. Technol. Lett.

S. Kawanishi, Y. Yamabayashi, T. Takada, H. Takara, M. Saruwatari, K. Nakagawa, “2-Gb/s operation of an optical-clock-driven monolithically integrated GaAs D-flip-flop with metal-semiconductor-metal photodetectors for high-speed synchronous circuits,” IEEE Photon. Technol. Lett. 4, 160–162 (1992).
[CrossRef]

T. Egawa, T. Jimbo, M. Umeno, “Monolithic integration of AlGaAs/GaAs MQW laser diode and GaAs MOSFET grown on Si using selective regrowth,” IEEE Photon. Technol. Lett. 4, 612–614 (1992).
[CrossRef]

Y. H. Lee, J. I. Song, M. S. Kim, C. S. Shim, B. Tell, R. E. Liebenguth, “Active optical nor logic devices using surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 479–482 (1992).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

M. E. Prise, N. Stribel, M. M. Downs, “Optical considerations in the design of digital optical computers,” Opt. Quantum Electron. 30, 49–77 (1988).
[CrossRef]

Other

See Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991);Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993);Photonics in Switching, 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993).

V. P. Heuring, “An optoelectronic computer graphics display processor, OGDP,” OCS Tech. Rep. 94-14 (Optoelectronic Computing Systems Center, University of Colorado, Boulder, Boulder, Colo., 1993).

V. C. Hamacher, Z. G. Vranesic, S. Zaki, Computer Organization (McGraw-Hill, New York, 1992), pp. 182.

H. Elion, V. Morozov, Optoelectronic Switching Systems in Telecommunication and Computers (Dekker, New York, 1984), Vol. 1, pp. 194–196.

M. J. Murdocca, A Digital Design Methodology for Optical Computing (MIT Press, Cambridge, Mass., 1990), pp. 43–58.

B. S. Wherrett, R. G. A. Craig, J. F. Snowden, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pawley, I. R. Redmond, D. McKnight, M. R. Taghizadeh, A. C. Walker, S. D. Smith, “Construction and tolerancing of an optical-CLIP,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1215, 264–273 (1990).

Z. Kohavi, Switching Theory and Finite Automata (McGraw-Hill, New York, 1978), p. 280.

V. Morozov, “Parallel optoelectronic counter: one more example of high efficiency free-space global interconnects problem,” OCS Tech. Rep. 94-15 (Optoelectronic Computing Systems Center, University of Colorado, Boulder, Boulder, Colo., 1994).

H. F. Jordan, V. P. Heuring, “Time-multiplexed optical computers,” in Proceedings of the Conference on Supercomputing '91 (IEEE Computer Society Press, New York, 1991), pp. 370–378.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Typical electronic microcoded control unit, (b) optoelectronic computer control unit.

Fig. 2
Fig. 2

Circuit diagram of a nor gate. AMP's, amplifiers.

Fig. 3
Fig. 3

nor-gate transfer function.

Fig. 4
Fig. 4

nor-gate pulse response.

Fig. 5
Fig. 5

(a) Oscillator experimental setup, (b) timing diagram of oscillator.

Fig. 6
Fig. 6

Oscilloscope trace of the oscillator output.

Fig. 7
Fig. 7

GSC: (a) experimental setup, (b) equivalent circuit, (c) timing diagram.

Fig. 8
Fig. 8

TOFC: (a) experimental setup, (b) equivalent circuit.

Fig. 9
Fig. 9

Oscilloscope trace of GSC.

Fig. 10
Fig. 10

TOFC: (a) Test circuit, (b) test circuit equivalent circuit, (c) test circuit timing diagram.

Fig. 11
Fig. 11

Oscilloscope trace of TOFC.

Tables (1)

Tables Icon

Table 1 State-Transition Table of Time-of-Flight Counter

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F n = τ P o P s ,
P s = V min η G υ R ,
F n = τ P o η G υ R V min .
T g = T c T s 2 T p .

Metrics