Abstract

An optical measurement technique is presented that permits a direct measurement of the differential transmission or reflectivity of a sample. The technique is based on the use of an acousto-optic device to modulate rapidly the incident angle or wavelength of the probe beam. Detection of the resulting modulated signal by means of a lock-in amplifier gives a direct measure of the differential optical properties of the sample. It is demonstrated that this direct measurement of the differential can strongly enhance normally undetectable optical features, such as weakly coupled, Otto geometry surface plasmon polaritons. A development of the technique, which uses the optical analog of a phase-locked loop, is demonstrated to have an angular resolution of 6 × 10−6 deg. This permits the detection of the shift in the critical angle caused by a change of 10−6 in the refractive index of a gas mixture.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
    [CrossRef]
  2. W. S. Ship, J. Biggins, C. W. Wade, “Performance characteristics of an electronically tunable acousto-optic filter for fast scanning spectrophotometry,” Rev. Sci. Instrum. 47, 565–569 (1976).
    [CrossRef]
  3. C. C. Speake, M. Lawrence, “Dynamical precision angle measurement with an acousto-optic beam deflector,” J. Opt. Soc. Am. A 5, 1254–1257 (1988).
    [CrossRef]
  4. J. Sapreil, Acousto-Optics (Wiley, New York, 1979).
  5. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  6. A. Otto, “Excitation of nonradiative surface plasma waves on silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  7. E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).
  8. A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
    [CrossRef]
  9. G. W. Bradberry, J. R. Sambles, “The excitation of infrared surface plasmon-polaritons on refractory metals,” Opt. Commun. 67, 404–408 (1988).
    [CrossRef]
  10. F. Yang, G. W. Bradberry, J. R. Sambles, “Infrared surface plasmon-polaritons on Ni, Pd and Pt,” J. Mod. Opt. 36, 1405–1410 (1989).
    [CrossRef]
  11. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1979).
  12. A. Otto, “The surface polaron resonance in attenuated total reflection,” in Proceedings of the Taormina Conference on Polaritons, E. Burstein, F. De Martini, eds. (Pergamon, Oxford, 1974), pp. 117–121.
  13. P. A. Gass, J. R. Sambles, “The angle-frequency relationship for a practical acousto-optic deflector,” Opt. Lett. 18, 1376–1378 (1993).
    [CrossRef] [PubMed]
  14. J. M. Bennett, J. L. Stanford, E. J. Ashley, “Optical constants of silver sulfide tarnish films,” J. Opt. Soc. Am. 60, 224–232 (1970).
    [CrossRef]
  15. G. J. Kovacs, “Sulphide formation on evaporated Ag films,” Surf. Sci. 78, L245–249 (1978).
    [CrossRef]
  16. U. Hohm, K. Kerl, “Interferometric measurements of the dipole polarizability alpha of molecules between 300 and 1100 K. I. Monochromatic measurements at gamma = 632.99 nm for the noble gases and H2, N2, O2 and CH4,” Mol. Phys. 69, 803–817 (1990).
    [CrossRef]
  17. K. Kerl, “Reduced representation of second virial coefficients by straight lines,” Ber. Bunsenges. Phys. Chem. 90, 789–794 (1986).
    [CrossRef]

1993 (1)

1990 (1)

U. Hohm, K. Kerl, “Interferometric measurements of the dipole polarizability alpha of molecules between 300 and 1100 K. I. Monochromatic measurements at gamma = 632.99 nm for the noble gases and H2, N2, O2 and CH4,” Mol. Phys. 69, 803–817 (1990).
[CrossRef]

1989 (1)

F. Yang, G. W. Bradberry, J. R. Sambles, “Infrared surface plasmon-polaritons on Ni, Pd and Pt,” J. Mod. Opt. 36, 1405–1410 (1989).
[CrossRef]

1988 (2)

G. W. Bradberry, J. R. Sambles, “The excitation of infrared surface plasmon-polaritons on refractory metals,” Opt. Commun. 67, 404–408 (1988).
[CrossRef]

C. C. Speake, M. Lawrence, “Dynamical precision angle measurement with an acousto-optic beam deflector,” J. Opt. Soc. Am. A 5, 1254–1257 (1988).
[CrossRef]

1987 (1)

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

1986 (1)

K. Kerl, “Reduced representation of second virial coefficients by straight lines,” Ber. Bunsenges. Phys. Chem. 90, 789–794 (1986).
[CrossRef]

1978 (1)

G. J. Kovacs, “Sulphide formation on evaporated Ag films,” Surf. Sci. 78, L245–249 (1978).
[CrossRef]

1976 (1)

W. S. Ship, J. Biggins, C. W. Wade, “Performance characteristics of an electronically tunable acousto-optic filter for fast scanning spectrophotometry,” Rev. Sci. Instrum. 47, 565–569 (1976).
[CrossRef]

1972 (1)

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

1970 (1)

1968 (2)

A. Otto, “Excitation of nonradiative surface plasma waves on silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).

Ashley, E. J.

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1979).

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1979).

Bennett, J. M.

Biggins, J.

W. S. Ship, J. Biggins, C. W. Wade, “Performance characteristics of an electronically tunable acousto-optic filter for fast scanning spectrophotometry,” Rev. Sci. Instrum. 47, 565–569 (1976).
[CrossRef]

Bonner, W. A.

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

Bradberry, G. W.

F. Yang, G. W. Bradberry, J. R. Sambles, “Infrared surface plasmon-polaritons on Ni, Pd and Pt,” J. Mod. Opt. 36, 1405–1410 (1989).
[CrossRef]

G. W. Bradberry, J. R. Sambles, “The excitation of infrared surface plasmon-polaritons on refractory metals,” Opt. Commun. 67, 404–408 (1988).
[CrossRef]

Dwelle, R.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Gass, P. A.

Hohm, U.

U. Hohm, K. Kerl, “Interferometric measurements of the dipole polarizability alpha of molecules between 300 and 1100 K. I. Monochromatic measurements at gamma = 632.99 nm for the noble gases and H2, N2, O2 and CH4,” Mol. Phys. 69, 803–817 (1990).
[CrossRef]

Katzka, P.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Kerl, K.

U. Hohm, K. Kerl, “Interferometric measurements of the dipole polarizability alpha of molecules between 300 and 1100 K. I. Monochromatic measurements at gamma = 632.99 nm for the noble gases and H2, N2, O2 and CH4,” Mol. Phys. 69, 803–817 (1990).
[CrossRef]

K. Kerl, “Reduced representation of second virial coefficients by straight lines,” Ber. Bunsenges. Phys. Chem. 90, 789–794 (1986).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs, “Sulphide formation on evaporated Ag films,” Surf. Sci. 78, L245–249 (1978).
[CrossRef]

Kretschmann, E.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).

Kurtz, I.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Lawrence, M.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves on silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

A. Otto, “The surface polaron resonance in attenuated total reflection,” in Proceedings of the Taormina Conference on Polaritons, E. Burstein, F. De Martini, eds. (Pergamon, Oxford, 1974), pp. 117–121.

Raether, H.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Sambles, J. R.

P. A. Gass, J. R. Sambles, “The angle-frequency relationship for a practical acousto-optic deflector,” Opt. Lett. 18, 1376–1378 (1993).
[CrossRef] [PubMed]

F. Yang, G. W. Bradberry, J. R. Sambles, “Infrared surface plasmon-polaritons on Ni, Pd and Pt,” J. Mod. Opt. 36, 1405–1410 (1989).
[CrossRef]

G. W. Bradberry, J. R. Sambles, “The excitation of infrared surface plasmon-polaritons on refractory metals,” Opt. Commun. 67, 404–408 (1988).
[CrossRef]

Sapreil, J.

J. Sapreil, Acousto-Optics (Wiley, New York, 1979).

Ship, W. S.

W. S. Ship, J. Biggins, C. W. Wade, “Performance characteristics of an electronically tunable acousto-optic filter for fast scanning spectrophotometry,” Rev. Sci. Instrum. 47, 565–569 (1976).
[CrossRef]

Speake, C. C.

Stanford, J. L.

Wade, C. W.

W. S. Ship, J. Biggins, C. W. Wade, “Performance characteristics of an electronically tunable acousto-optic filter for fast scanning spectrophotometry,” Rev. Sci. Instrum. 47, 565–569 (1976).
[CrossRef]

Warner, A. W.

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

White, D. L.

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

Yang, F.

F. Yang, G. W. Bradberry, J. R. Sambles, “Infrared surface plasmon-polaritons on Ni, Pd and Pt,” J. Mod. Opt. 36, 1405–1410 (1989).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

K. Kerl, “Reduced representation of second virial coefficients by straight lines,” Ber. Bunsenges. Phys. Chem. 90, 789–794 (1986).
[CrossRef]

J. Appl. Phys. (1)

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

J. Mod. Opt. (1)

F. Yang, G. W. Bradberry, J. R. Sambles, “Infrared surface plasmon-polaritons on Ni, Pd and Pt,” J. Mod. Opt. 36, 1405–1410 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Mol. Phys. (1)

U. Hohm, K. Kerl, “Interferometric measurements of the dipole polarizability alpha of molecules between 300 and 1100 K. I. Monochromatic measurements at gamma = 632.99 nm for the noble gases and H2, N2, O2 and CH4,” Mol. Phys. 69, 803–817 (1990).
[CrossRef]

Opt. Commun. (1)

G. W. Bradberry, J. R. Sambles, “The excitation of infrared surface plasmon-polaritons on refractory metals,” Opt. Commun. 67, 404–408 (1988).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

W. S. Ship, J. Biggins, C. W. Wade, “Performance characteristics of an electronically tunable acousto-optic filter for fast scanning spectrophotometry,” Rev. Sci. Instrum. 47, 565–569 (1976).
[CrossRef]

Surf. Sci. (1)

G. J. Kovacs, “Sulphide formation on evaporated Ag films,” Surf. Sci. 78, L245–249 (1978).
[CrossRef]

Z. Naturforsch. (1)

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves on silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other (4)

J. Sapreil, Acousto-Optics (Wiley, New York, 1979).

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1979).

A. Otto, “The surface polaron resonance in attenuated total reflection,” in Proceedings of the Taormina Conference on Polaritons, E. Burstein, F. De Martini, eds. (Pergamon, Oxford, 1974), pp. 117–121.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Reflectivity plot for a silver–air SPP resonance (1.8 index prism, 50-nm silver layer).

Fig. 2
Fig. 2

Prism coupling geometries: (a) Otto (b) Kretschmann.

Fig. 3
Fig. 3

AO differential measurement system.

Fig. 4
Fig. 4

Normal and differential reflectivity for a silver–air plasmon. The dashed trace gives the differential calculated numerically from normal reflectivity results.

Fig. 5
Fig. 5

Differential reflectivities for Otto plasmon, with air gaps equal to (a) 2.11 μm, (b) 2.33 μm, (c) 2.62 μm, (d) 3.10 μm. Crosses and upper curves show the data and the fit for normal reflectivities, respectively.

Fig. 6
Fig. 6

The AO locking system.

Fig. 7
Fig. 7

Normal and differential reflectivities for a sapphire–air critical angle. The two differential traces have been offset from zero to aid comparison.

Fig. 8
Fig. 8

Drift in rf drive frequency caused by 0.22 nm/day silver sulphide formation at the silver surface compared with the stability of the AOD drive frequency with nitrogen flow.

Fig. 9
Fig. 9

Response of frequency to changes in the ratio of an Ar/N2 mixture. Starting level is 100% Ar, and the steps are (from left to right) 100%, 75%, 50%, 25%, 10%, and 5% N2. The sequence then repeats.

Fig. 10
Fig. 10

Complementary results to those given in Fig. 9, starting with 100% N2. Steps are 100%, 25%, 50%, 75%, 90%, and 95% Ar; they are then repeated.

Fig. 11
Fig. 11

Shift in frequency as a function of Ar/N2 mixture composition, The spread in the data points for each gas composition indicates the level of the run-to-run variation.

Tables (2)

Tables Icon

Table 1 Otto Geometry Results

Tables Icon

Table 2 Optical Data for Argon and Nitrogen

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k x = ω c ( 1 2 1 + 2 ) 1 / 2 ,
n sin θ i = ( 1 2 1 + 2 ) 1 / 2 .
Δ θ ( mrad ) = 1.024 Δ F ( MHz ) .
Δ θ ( mrad ) = ( 1.107 ± 0.006 ) Δ F ( MHz ) .
n 2 ( ω , T , p ) - 1 n 2 ( ω , T , p ) - 2 = 4 3 π N a α ( ω , T , p ) ρ 0 [ 1 - B ( T ) ρ 0 ] ,

Metrics