Abstract

We review the operating principles of noncollinear acousto-optic tunable filters (AOTF’s), emphasizing use of two orthogonally polarized beams for narrow-band imaging. Spectral characterization and the spectral broadening measurements of commercially available AOTF’s agree with theoretical predictions and reveal difficulties associated with imaging noncollimated light. An AOTF imaging spectropolarimeter for ground-based astronomy that uses CCD’s has been constructed at NASA Goddard Space Flight Center. It uses a TeO2 noncollinear AOTF and a simple optical relay assembly to produce side-by-side orthogonally polarized spectral images. We summarize the instrument design and initial performance tests. We include sample spectral images acquired at the Goddard Geophysical and Astronomical Observatory.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  2. I. C. Chang, “Analysis of the noncollinear acousto-optic filters,” Electron. Lett. 11, 617–618 (1975).
    [CrossRef]
  3. T. Yano, A. Watanabe, “Acoustooptic filter TeO2 tunable using far-off-axis anisotropic Bragg diffraction,” Appl. Opt. 15, 2250–2258 (1976).
    [CrossRef] [PubMed]
  4. I. C. Chang, “Tunable acousto-optic filters: an overview,” Opt. Eng. 16, 455–460 (1977).
  5. I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
  6. A. Sivanayagam, D. Findlay, “High resolution noncollinear acoustooptic filters with variable passband characteristics: design,” Appl. Opt. 23, 4601–4608 (1984).
    [CrossRef] [PubMed]
  7. J. E. B. Olivera, E. L. Adler, “An analytical method for designing acousto-optical tunable filters,” IEEE Ultrason. Symp. 1, 505–510 (1987).
  8. P. Katzka, “AOTF overview: past, present and future,” in Acousto-Optic, Electro-optic, and Magneto-optic Devices and Applications, J. A. Lucero, ed., Proc. Soc. Photo-Opt. Instrum. Eng.753, 22–28 (1987).
  9. P. A. Gass, J. R. Sambles, “Accurate design of a noncollinear acousto-optic tunable filter,” Opt. Lett. 16, 429–431 (1991).
    [CrossRef] [PubMed]
  10. I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
    [CrossRef]
  11. T. H. Chao, J. Yu, L. J. Cheng, J. Lambert, “Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications: I. Systems issues; II. Breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1347, 644–660 (1990).
  12. L. J. Cheng, T. H. Chao, G. Reyes, “Acousto-optic tunable filter multispectral imaging system,” presented at the AIAA Space Programs Technology Conference, Huntsville, Ala., 24–27 March 1992, paper AIAA92-1439.
  13. I. C. Chang, “Development of an infrared tunable acousto-optic filter,” in Practical Infrared Optics, G. Speake, J. Zimmerman, eds., Proc. Soc. Photo-Opt. Instrum. Eng.131, 2–10(1978).
  14. W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
    [CrossRef]
  15. D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstralh, “POLARIS-II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1747, 92–101 (1992).
  16. D. L. Coffeen, “Wavelength dependence of polarization XVI: the atmosphere of Venus,” Astron. J. 74, 446–460 (1969).
    [CrossRef]
  17. A. Dollfuss, D. L. Coffeen, “Polarization of Venus I: disk observations,” Astron. Astrophys. 8, 251–266 (1970).
  18. J. E. Hansen, A. Arking, “Clouds of Venus: evidence for their nature,” Science 171, 669–672 (1971).
    [CrossRef] [PubMed]
  19. J. E. Hansen, J. W. Hovenier, “Interpretation of the polarization of Venus,” J. Atmos. Sci. 31, 1137–1160 (1974).
    [CrossRef]
  20. G. T. Sill, “Sulfuric acid in the Venus clouds,” Commun. Lunar Planet. Lab. 9, 191–198 (1972).
  21. A. T. Young, “Are the clouds of Venus sulfuric acid?” Icarus 18, 564–582 (1973).
    [CrossRef]
  22. Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
    [CrossRef]
  23. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
    [CrossRef]
  24. D. R. Shure, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
    [CrossRef]
  25. C. B. Pilcher, R. G. Prinn, T. B. McCord, “Spectroscopy of Jupiter: 3200 to 11,200 Angstroms,” J. Atmos. Sci. 30, 302–307 (1973).
    [CrossRef]
  26. B. A. Smith, “Observation of atmospheric limb darkening in the visual continuum and an analysis of multiple scattering in the atmospheres of Jupiter and Saturn,” Ph.D. dissertation (New Mexico State University, University Park, N. Mex., 1972).
  27. R. A. West, “Spatially resolved methane band photometry of Jupiter. I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands,” Icarus 38, 12–33 (1979).
    [CrossRef]

1992 (1)

D. R. Shure, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

1991 (2)

P. A. Gass, J. R. Sambles, “Accurate design of a noncollinear acousto-optic tunable filter,” Opt. Lett. 16, 429–431 (1991).
[CrossRef] [PubMed]

W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
[CrossRef]

1987 (1)

J. E. B. Olivera, E. L. Adler, “An analytical method for designing acousto-optical tunable filters,” IEEE Ultrason. Symp. 1, 505–510 (1987).

1984 (1)

1981 (1)

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).

1979 (1)

R. A. West, “Spatially resolved methane band photometry of Jupiter. I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands,” Icarus 38, 12–33 (1979).
[CrossRef]

1977 (1)

I. C. Chang, “Tunable acousto-optic filters: an overview,” Opt. Eng. 16, 455–460 (1977).

1976 (2)

1975 (1)

I. C. Chang, “Analysis of the noncollinear acousto-optic filters,” Electron. Lett. 11, 617–618 (1975).
[CrossRef]

1974 (2)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

J. E. Hansen, J. W. Hovenier, “Interpretation of the polarization of Venus,” J. Atmos. Sci. 31, 1137–1160 (1974).
[CrossRef]

1973 (2)

A. T. Young, “Are the clouds of Venus sulfuric acid?” Icarus 18, 564–582 (1973).
[CrossRef]

C. B. Pilcher, R. G. Prinn, T. B. McCord, “Spectroscopy of Jupiter: 3200 to 11,200 Angstroms,” J. Atmos. Sci. 30, 302–307 (1973).
[CrossRef]

1972 (1)

G. T. Sill, “Sulfuric acid in the Venus clouds,” Commun. Lunar Planet. Lab. 9, 191–198 (1972).

1971 (2)

J. E. Hansen, A. Arking, “Clouds of Venus: evidence for their nature,” Science 171, 669–672 (1971).
[CrossRef] [PubMed]

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

1970 (2)

Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

A. Dollfuss, D. L. Coffeen, “Polarization of Venus I: disk observations,” Astron. Astrophys. 8, 251–266 (1970).

1969 (1)

D. L. Coffeen, “Wavelength dependence of polarization XVI: the atmosphere of Venus,” Astron. J. 74, 446–460 (1969).
[CrossRef]

Adler, E. L.

J. E. B. Olivera, E. L. Adler, “An analytical method for designing acousto-optical tunable filters,” IEEE Ultrason. Symp. 1, 505–510 (1987).

Arking, A.

J. E. Hansen, A. Arking, “Clouds of Venus: evidence for their nature,” Science 171, 669–672 (1971).
[CrossRef] [PubMed]

Bergstralh, J.

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstralh, “POLARIS-II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1747, 92–101 (1992).

Chang, I. C.

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).

I. C. Chang, “Tunable acousto-optic filters: an overview,” Opt. Eng. 16, 455–460 (1977).

I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

I. C. Chang, “Analysis of the noncollinear acousto-optic filters,” Electron. Lett. 11, 617–618 (1975).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

I. C. Chang, “Development of an infrared tunable acousto-optic filter,” in Practical Infrared Optics, G. Speake, J. Zimmerman, eds., Proc. Soc. Photo-Opt. Instrum. Eng.131, 2–10(1978).

Chao, T. H.

L. J. Cheng, T. H. Chao, G. Reyes, “Acousto-optic tunable filter multispectral imaging system,” presented at the AIAA Space Programs Technology Conference, Huntsville, Ala., 24–27 March 1992, paper AIAA92-1439.

T. H. Chao, J. Yu, L. J. Cheng, J. Lambert, “Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications: I. Systems issues; II. Breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1347, 644–660 (1990).

Cheng, L. J.

T. H. Chao, J. Yu, L. J. Cheng, J. Lambert, “Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications: I. Systems issues; II. Breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1347, 644–660 (1990).

L. J. Cheng, T. H. Chao, G. Reyes, “Acousto-optic tunable filter multispectral imaging system,” presented at the AIAA Space Programs Technology Conference, Huntsville, Ala., 24–27 March 1992, paper AIAA92-1439.

Coffeen, D. L.

A. Dollfuss, D. L. Coffeen, “Polarization of Venus I: disk observations,” Astron. Astrophys. 8, 251–266 (1970).

D. L. Coffeen, “Wavelength dependence of polarization XVI: the atmosphere of Venus,” Astron. J. 74, 446–460 (1969).
[CrossRef]

Dollfuss, A.

A. Dollfuss, D. L. Coffeen, “Polarization of Venus I: disk observations,” Astron. Astrophys. 8, 251–266 (1970).

Findlay, D.

Gass, P. A.

Glenar, D. A.

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstralh, “POLARIS-II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1747, 92–101 (1992).

Gottlieb, M.

D. R. Shure, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Hansen, J. E.

J. E. Hansen, J. W. Hovenier, “Interpretation of the polarization of Venus,” J. Atmos. Sci. 31, 1137–1160 (1974).
[CrossRef]

J. E. Hansen, A. Arking, “Clouds of Venus: evidence for their nature,” Science 171, 669–672 (1971).
[CrossRef] [PubMed]

Hillman, J. J.

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstralh, “POLARIS-II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1747, 92–101 (1992).

Hovenier, J. W.

J. E. Hansen, J. W. Hovenier, “Interpretation of the polarization of Venus,” J. Atmos. Sci. 31, 1137–1160 (1974).
[CrossRef]

Katzka, P.

P. Katzka, “AOTF overview: past, present and future,” in Acousto-Optic, Electro-optic, and Magneto-optic Devices and Applications, J. A. Lucero, ed., Proc. Soc. Photo-Opt. Instrum. Eng.753, 22–28 (1987).

Lambert, J.

T. H. Chao, J. Yu, L. J. Cheng, J. Lambert, “Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications: I. Systems issues; II. Breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1347, 644–660 (1990).

McCord, T. B.

C. B. Pilcher, R. G. Prinn, T. B. McCord, “Spectroscopy of Jupiter: 3200 to 11,200 Angstroms,” J. Atmos. Sci. 30, 302–307 (1973).
[CrossRef]

Melamed, N. T.

D. R. Shure, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Ohmachi, Y.

Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

Olivera, J. E. B.

J. E. B. Olivera, E. L. Adler, “An analytical method for designing acousto-optical tunable filters,” IEEE Ultrason. Symp. 1, 505–510 (1987).

Pilcher, C. B.

C. B. Pilcher, R. G. Prinn, T. B. McCord, “Spectroscopy of Jupiter: 3200 to 11,200 Angstroms,” J. Atmos. Sci. 30, 302–307 (1973).
[CrossRef]

Prinn, R. G.

C. B. Pilcher, R. G. Prinn, T. B. McCord, “Spectroscopy of Jupiter: 3200 to 11,200 Angstroms,” J. Atmos. Sci. 30, 302–307 (1973).
[CrossRef]

Reyes, G.

L. J. Cheng, T. H. Chao, G. Reyes, “Acousto-optic tunable filter multispectral imaging system,” presented at the AIAA Space Programs Technology Conference, Huntsville, Ala., 24–27 March 1992, paper AIAA92-1439.

Saif, B.

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstralh, “POLARIS-II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1747, 92–101 (1992).

Sambles, J. R.

Shure, D. R.

D. R. Shure, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Sill, G. T.

G. T. Sill, “Sulfuric acid in the Venus clouds,” Commun. Lunar Planet. Lab. 9, 191–198 (1972).

Sivanayagam, A.

Smith, B. A.

B. A. Smith, “Observation of atmospheric limb darkening in the visual continuum and an analysis of multiple scattering in the atmospheres of Jupiter and Saturn,” Ph.D. dissertation (New Mexico State University, University Park, N. Mex., 1972).

Smith, K. M.

W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
[CrossRef]

Smith, W. H.

W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
[CrossRef]

Taylor, L. H.

D. R. Shure, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Uchida, N.

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

Watanabe, A.

West, R. A.

R. A. West, “Spatially resolved methane band photometry of Jupiter. I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands,” Icarus 38, 12–33 (1979).
[CrossRef]

Yano, T.

Young, A. T.

A. T. Young, “Are the clouds of Venus sulfuric acid?” Icarus 18, 564–582 (1973).
[CrossRef]

Yu, J.

T. H. Chao, J. Yu, L. J. Cheng, J. Lambert, “Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications: I. Systems issues; II. Breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1347, 644–660 (1990).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Astron. Astrophys. (1)

A. Dollfuss, D. L. Coffeen, “Polarization of Venus I: disk observations,” Astron. Astrophys. 8, 251–266 (1970).

Astron. J. (1)

D. L. Coffeen, “Wavelength dependence of polarization XVI: the atmosphere of Venus,” Astron. J. 74, 446–460 (1969).
[CrossRef]

Commun. Lunar Planet. Lab. (1)

G. T. Sill, “Sulfuric acid in the Venus clouds,” Commun. Lunar Planet. Lab. 9, 191–198 (1972).

Electron. Lett. (1)

I. C. Chang, “Analysis of the noncollinear acousto-optic filters,” Electron. Lett. 11, 617–618 (1975).
[CrossRef]

Exp. Astron. (1)

W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
[CrossRef]

Icarus (2)

A. T. Young, “Are the clouds of Venus sulfuric acid?” Icarus 18, 564–582 (1973).
[CrossRef]

R. A. West, “Spatially resolved methane band photometry of Jupiter. I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands,” Icarus 38, 12–33 (1979).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

IEEE Ultrason. Symp. (1)

J. E. B. Olivera, E. L. Adler, “An analytical method for designing acousto-optical tunable filters,” IEEE Ultrason. Symp. 1, 505–510 (1987).

J. Appl. Phys. (1)

Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

J. Atmos. Sci. (2)

J. E. Hansen, J. W. Hovenier, “Interpretation of the polarization of Venus,” J. Atmos. Sci. 31, 1137–1160 (1974).
[CrossRef]

C. B. Pilcher, R. G. Prinn, T. B. McCord, “Spectroscopy of Jupiter: 3200 to 11,200 Angstroms,” J. Atmos. Sci. 30, 302–307 (1973).
[CrossRef]

Opt. Eng. (3)

D. R. Shure, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

I. C. Chang, “Tunable acousto-optic filters: an overview,” Opt. Eng. 16, 455–460 (1977).

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).

Opt. Lett. (1)

Phys. Rev. B (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

Science (1)

J. E. Hansen, A. Arking, “Clouds of Venus: evidence for their nature,” Science 171, 669–672 (1971).
[CrossRef] [PubMed]

Other (6)

P. Katzka, “AOTF overview: past, present and future,” in Acousto-Optic, Electro-optic, and Magneto-optic Devices and Applications, J. A. Lucero, ed., Proc. Soc. Photo-Opt. Instrum. Eng.753, 22–28 (1987).

D. A. Glenar, J. J. Hillman, B. Saif, J. Bergstralh, “POLARIS-II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1747, 92–101 (1992).

T. H. Chao, J. Yu, L. J. Cheng, J. Lambert, “Acousto-optic tunable filter (AOTF) imaging spectrometer for NASA applications: I. Systems issues; II. Breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1347, 644–660 (1990).

L. J. Cheng, T. H. Chao, G. Reyes, “Acousto-optic tunable filter multispectral imaging system,” presented at the AIAA Space Programs Technology Conference, Huntsville, Ala., 24–27 March 1992, paper AIAA92-1439.

I. C. Chang, “Development of an infrared tunable acousto-optic filter,” in Practical Infrared Optics, G. Speake, J. Zimmerman, eds., Proc. Soc. Photo-Opt. Instrum. Eng.131, 2–10(1978).

B. A. Smith, “Observation of atmospheric limb darkening in the visual continuum and an analysis of multiple scattering in the atmospheres of Jupiter and Saturn,” Ph.D. dissertation (New Mexico State University, University Park, N. Mex., 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Geometric characteristics of a noncollinear AOTF: (a) k-vector diagram, (b) AOTF geometry, (c) device photograph, with green He–Ne beam incident from lower left.

Fig. 2
Fig. 2

Measured and predicted AOTF tuning curves.

Fig. 3
Fig. 3

Bandpass shapes for AOTF 1 (e′ output) and AOTF 2 (o′ output). The model is normalized to the measured peak intensity because it contains no efficiency information.

Fig. 4
Fig. 4

Regions of NPM for randomly polarized light over a range of incident angles: (a) ordinary output light, where a wide angular aperture occurs at the o′ output; (b) extraordinary output light; smaller incident angles create this condition at the e′ output.

Fig. 5
Fig. 5

Regions of NPM for both devices. A vertical line shows the direction of the first-surface normal (Θ N ). The point marked with an asterisk is the optimum internal angle for simultaneous two-beam imaging.

Fig. 6
Fig. 6

Effect of noncollimated light on the device bandpass shapes, using f/11 optics. Broadening is severe for AOTF 1, because the incoming ray direction is far from NPM for both beams. The residual intensity in the top left panel is due to stray light from the relatively bright undiffracted beam.

Fig. 7
Fig. 7

Layout of the imaging spectropolarimeter: VDC, dc volts; A to D, analog to digital; GPIB, general-purpose interface bus.

Fig. 8
Fig. 8

Full CCD array format showing side-by-side, orthogonally polarized, 700-nm test-target images acquired with AOTF 2.

Fig. 9
Fig. 9

Spatial frequency response, using AOTF 2. See text for a description of the calculated response.

Fig. 10
Fig. 10

Polarization isolation between the o′ and e′ output beams, using AOTF 2.

Fig. 11
Fig. 11

Spectral reflectivity of Jupiter, from Pilcher et al.25 The dashed lines bracket the observed range of wavelengths in the AOTF image sequence.

Fig. 12
Fig. 12

Unprocessed (not flat-fielded) AOTF spectral image sequence of Jupiter, using AOTF 1. All images are normalized to the same peak intensity. The center wavelength (725 nm) lies in a CH4 absorption band.

Fig. 13
Fig. 13

Sample central meridian intensity along Jupiter’s North-South polar axis. The solid curve is a column plot along the central meridian of the 765-nm image. The dotted curve shows a Lambertian reflector convolved with a Gaussian blurring function, which represents seeing. The blur is adjusted to fit the data in the wings of the profile.

Fig. 14
Fig. 14

Plots showing the relative reflectivity along the central meridian at each wavelength. The belt-zone contrast increases at 725 nm, near greatest CH4 absorption.

Tables (4)

Tables Icon

Table 1 Typical Specifications for Commercial TeO2 AOTF’s (Refs. 1, 4, and 5)

Tables Icon

Table 2 Summary of AOTF Characteristics

Tables Icon

Table 3 TeO2 Refractive Index Coefficients (Ref. 23)

Tables Icon

Table 4 Operating Features of the AOTF Imaging Spectrometer

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

f e o = V a λ n e ( Θ i ) ( sin ( Θ i - α ) - { sin 2 ( Θ i - α ) + [ ( n o / n e ) 2 - 1 ] sin 2 Θ i } 1 / 2 ) .
V a 2 = V [ 110 ] 2 cos 2 α + V [ 001 ] 2 sin 2 α ,
n 2 - 1 = A 1 ( 1 / λ 1 ) 2 - ( 1 / λ ) 2 + A 2 ( 1 / λ 2 ) 2 - ( 1 / λ ) 2 ,
n e ( Θ ) = ( cos 2 Θ n o 2 + sin 2 Θ n e 2 ) - 1 / 2 .
f o e = V a λ n e ( α - π / 2 ) ( C ( Θ i ) + { C ( Θ i ) 2 - [ ( n o / n e ) 2 - 1 ] sin 2 Θ i } 1 / 2 ) ,
C ( Θ i ) = n e ( α - π / 2 ) n o [ sin α cos Θ i - ( n o n e ) 2 cos α sin Θ i ] .
I a = sinc 2 ( 0.886 Δ α Δ α FW ) ,
f = ( n e - n o ) V a λ sin 2 Θ i sin ( Θ i - α ) .
d f = 0 = f λ d λ + f α d α ,
d λ d α = 2 π ( n e - n o ) λ b λ [ 1 tan ( Θ i - α ) + V [ 001 ] 2 - V [ 110 ] 2 V a 2 × sin ( Θ i - α ) sin 2 α sin 2 Θ i ] ,
b λ = 2 π [ ( n e - n o ) - λ ( n e - n o ) λ ] , = 2 π [ ( n e - n o ) + λ A ( λ - λ c ) 2 ] .
Δ λ FW = Δ α FW d λ d α , = 1.77 π λ o 2 b λ W sin 2 Θ i [ cos ( Θ i - α ) + V [ 001 ] 2 - V [ 110 ] 2 V a 2 × sin 2 ( Θ i - α ) sin 2 α sin 2 Θ i ] ,
Δ λ FW = 1.8 π λ o 2 b λ L sin 2 Θ i ,
T λ = T o sinc 2 ( 0.886 λ - λ o Δ λ FW ) .
λ = λ o + ( f o - f ) ( δ λ δ f ) λ o = λ o ( 2 - f f o ) .
δ blur 1 2 n 2 f n o δ n δ λ Δ λ .
NESR = 6 × 10 - 16 ( n R 2 + I d τ ) 1 / 2 A Ω px Δ λ FW t opt ɛ sp QE λ λ τ ( W cm - 2 nm - 1 sr - 1 ) ,
I FF ( obj ) = I rf on ( obj ) - I rf off ( obj ) I rf on ( FF ) - I rf off ( FF ) .

Metrics