Abstract

The in-plane and vertical birefringence of polycarbonate plastic substrates of optical disks are measured for wavelengths between 360 and 860 nm, which covers the full range of interest for blue as well as for the current red and infrared recording. It is found that the birefringence generally decreases as the measurement wavelength is increased. In a typical case, the in-plane birefringence, Δn goes from 1.7 × 10−5 to 1.2 × 10−5, and the vertical birefringence, Δn , drops from 7.5 × 10−4 to 5.7 × 10−4 in the wavelength range from 360 to 860 nm.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Treves, D. S. Bloomberg, “Effect of birefringence on optical memory systems,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 262–269 (1986).
  2. A. B. Marchant, “Retardation effects in magneto-optic readout,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 270–276 (1986).
  3. W. A. Challener, T. A. Rinehart, “Jones matrix analysis of magneto-optical media and read-back systems,” Appl. Opt. 26, 3974–3980 (1987).
    [CrossRef] [PubMed]
  4. T. Toda, K. Shigematsu, M. Ojima, M. Yoshihiro, “Analysis of signal-to-noise ratio in magneto-optical disk using a polarization simulator,” Electron. Commun. Jpn. Part 2, 72, 49–57(1989).
  5. A. Yoshizawa, N. Matsubayashi, “Analysis of optical anisotropy of PC substrate for M-O disks and its effect on CNR,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 91–98 (1986).
  6. W. Siebourg, H. Schmid, F. M. Rateike, S. Abders, U. Grigo, “Birefringence—an important property of plastic substrates for magneto-optical storage disks,” Polym. Eng. Sci. 30, 1133–1139 (1990).
    [CrossRef]
  7. I. Prikryl, “Effect of disk birefringence on a differential magneto-optic readout,” Appl. Opt. 31, 1853–1862 (1992).
    [CrossRef] [PubMed]
  8. A. Takahashi, M. Mieda, Y. Murakami, K. Ohta, H. Yamaoka, “Influence of birefringence on the signal quality of magneto-optical disks using polycarbonate substrates,” Appl. Opt. 27, 2863–2866 (1988).
    [CrossRef] [PubMed]
  9. S. Shirouzu, K. Shigematsu, S. Sakamoto, T. Nakagawa, S. Tagami, “Refractive index ellipsoids of a polycarbonate magneto-optical memory disk substrate,” Jpn. J. Appl. Phys. 28, 797–800 (1989).
    [CrossRef]
  10. J. E. Hayden, S. D. Jacobs, “Automated spatially scanning ellipsometer for retardation measurements of transparent materials,” Appl. Opt. 32, 6256–6263 (1993).
    [CrossRef] [PubMed]
  11. A. Skumanich, “Substrate birefringence in coated optical storage disks,” J. Magn. Soc. Jpn. 17, 237–240 (1993).
  12. Hong Fu, S. Sugaya, J. K. Erwin, M. Mansuripur, “Measurement of birefringence for optical recording disk substrates,” Appl. Opt. 33, 1938–1949 (1994).
    [CrossRef] [PubMed]
  13. F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. Sect. A 67, 363–377 (1963).
  14. M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
    [CrossRef]
  15. J. D. Jackson, Classic Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 278–284.

1994 (1)

1993 (2)

1992 (1)

1990 (2)

W. Siebourg, H. Schmid, F. M. Rateike, S. Abders, U. Grigo, “Birefringence—an important property of plastic substrates for magneto-optical storage disks,” Polym. Eng. Sci. 30, 1133–1139 (1990).
[CrossRef]

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

1989 (2)

S. Shirouzu, K. Shigematsu, S. Sakamoto, T. Nakagawa, S. Tagami, “Refractive index ellipsoids of a polycarbonate magneto-optical memory disk substrate,” Jpn. J. Appl. Phys. 28, 797–800 (1989).
[CrossRef]

T. Toda, K. Shigematsu, M. Ojima, M. Yoshihiro, “Analysis of signal-to-noise ratio in magneto-optical disk using a polarization simulator,” Electron. Commun. Jpn. Part 2, 72, 49–57(1989).

1988 (1)

1987 (1)

1963 (1)

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. Sect. A 67, 363–377 (1963).

Abders, S.

W. Siebourg, H. Schmid, F. M. Rateike, S. Abders, U. Grigo, “Birefringence—an important property of plastic substrates for magneto-optical storage disks,” Polym. Eng. Sci. 30, 1133–1139 (1990).
[CrossRef]

Bloomberg, D. S.

D. Treves, D. S. Bloomberg, “Effect of birefringence on optical memory systems,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 262–269 (1986).

Challener, W. A.

Erwin, J. K.

Fu, Hong

Grigo, U.

W. Siebourg, H. Schmid, F. M. Rateike, S. Abders, U. Grigo, “Birefringence—an important property of plastic substrates for magneto-optical storage disks,” Polym. Eng. Sci. 30, 1133–1139 (1990).
[CrossRef]

Hayden, J. E.

Jackson, J. D.

J. D. Jackson, Classic Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 278–284.

Jacobs, S. D.

Mansuripur, M.

Hong Fu, S. Sugaya, J. K. Erwin, M. Mansuripur, “Measurement of birefringence for optical recording disk substrates,” Appl. Opt. 33, 1938–1949 (1994).
[CrossRef] [PubMed]

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

Marchant, A. B.

A. B. Marchant, “Retardation effects in magneto-optic readout,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 270–276 (1986).

Matsubayashi, N.

A. Yoshizawa, N. Matsubayashi, “Analysis of optical anisotropy of PC substrate for M-O disks and its effect on CNR,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 91–98 (1986).

McCrackin, F. L.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. Sect. A 67, 363–377 (1963).

Mieda, M.

Murakami, Y.

Nakagawa, T.

S. Shirouzu, K. Shigematsu, S. Sakamoto, T. Nakagawa, S. Tagami, “Refractive index ellipsoids of a polycarbonate magneto-optical memory disk substrate,” Jpn. J. Appl. Phys. 28, 797–800 (1989).
[CrossRef]

Ohta, K.

Ojima, M.

T. Toda, K. Shigematsu, M. Ojima, M. Yoshihiro, “Analysis of signal-to-noise ratio in magneto-optical disk using a polarization simulator,” Electron. Commun. Jpn. Part 2, 72, 49–57(1989).

Passaglia, E.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. Sect. A 67, 363–377 (1963).

Prikryl, I.

Rateike, F. M.

W. Siebourg, H. Schmid, F. M. Rateike, S. Abders, U. Grigo, “Birefringence—an important property of plastic substrates for magneto-optical storage disks,” Polym. Eng. Sci. 30, 1133–1139 (1990).
[CrossRef]

Rinehart, T. A.

Sakamoto, S.

S. Shirouzu, K. Shigematsu, S. Sakamoto, T. Nakagawa, S. Tagami, “Refractive index ellipsoids of a polycarbonate magneto-optical memory disk substrate,” Jpn. J. Appl. Phys. 28, 797–800 (1989).
[CrossRef]

Schmid, H.

W. Siebourg, H. Schmid, F. M. Rateike, S. Abders, U. Grigo, “Birefringence—an important property of plastic substrates for magneto-optical storage disks,” Polym. Eng. Sci. 30, 1133–1139 (1990).
[CrossRef]

Shigematsu, K.

T. Toda, K. Shigematsu, M. Ojima, M. Yoshihiro, “Analysis of signal-to-noise ratio in magneto-optical disk using a polarization simulator,” Electron. Commun. Jpn. Part 2, 72, 49–57(1989).

S. Shirouzu, K. Shigematsu, S. Sakamoto, T. Nakagawa, S. Tagami, “Refractive index ellipsoids of a polycarbonate magneto-optical memory disk substrate,” Jpn. J. Appl. Phys. 28, 797–800 (1989).
[CrossRef]

Shirouzu, S.

S. Shirouzu, K. Shigematsu, S. Sakamoto, T. Nakagawa, S. Tagami, “Refractive index ellipsoids of a polycarbonate magneto-optical memory disk substrate,” Jpn. J. Appl. Phys. 28, 797–800 (1989).
[CrossRef]

Siebourg, W.

W. Siebourg, H. Schmid, F. M. Rateike, S. Abders, U. Grigo, “Birefringence—an important property of plastic substrates for magneto-optical storage disks,” Polym. Eng. Sci. 30, 1133–1139 (1990).
[CrossRef]

Skumanich, A.

A. Skumanich, “Substrate birefringence in coated optical storage disks,” J. Magn. Soc. Jpn. 17, 237–240 (1993).

Steinberg, H. L.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. Sect. A 67, 363–377 (1963).

Stromberg, R. R.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. Sect. A 67, 363–377 (1963).

Sugaya, S.

Tagami, S.

S. Shirouzu, K. Shigematsu, S. Sakamoto, T. Nakagawa, S. Tagami, “Refractive index ellipsoids of a polycarbonate magneto-optical memory disk substrate,” Jpn. J. Appl. Phys. 28, 797–800 (1989).
[CrossRef]

Takahashi, A.

Toda, T.

T. Toda, K. Shigematsu, M. Ojima, M. Yoshihiro, “Analysis of signal-to-noise ratio in magneto-optical disk using a polarization simulator,” Electron. Commun. Jpn. Part 2, 72, 49–57(1989).

Treves, D.

D. Treves, D. S. Bloomberg, “Effect of birefringence on optical memory systems,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 262–269 (1986).

Yamaoka, H.

Yoshihiro, M.

T. Toda, K. Shigematsu, M. Ojima, M. Yoshihiro, “Analysis of signal-to-noise ratio in magneto-optical disk using a polarization simulator,” Electron. Commun. Jpn. Part 2, 72, 49–57(1989).

Yoshizawa, A.

A. Yoshizawa, N. Matsubayashi, “Analysis of optical anisotropy of PC substrate for M-O disks and its effect on CNR,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 91–98 (1986).

Appl. Opt. (5)

Electron. Commun. Jpn. Part 2 (1)

T. Toda, K. Shigematsu, M. Ojima, M. Yoshihiro, “Analysis of signal-to-noise ratio in magneto-optical disk using a polarization simulator,” Electron. Commun. Jpn. Part 2, 72, 49–57(1989).

J. Appl. Phys. (1)

M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990).
[CrossRef]

J. Magn. Soc. Jpn. (1)

A. Skumanich, “Substrate birefringence in coated optical storage disks,” J. Magn. Soc. Jpn. 17, 237–240 (1993).

J. Res. Natl. Bur. Stand. Sect. A (1)

F. L. McCrackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Natl. Bur. Stand. Sect. A 67, 363–377 (1963).

Jpn. J. Appl. Phys. (1)

S. Shirouzu, K. Shigematsu, S. Sakamoto, T. Nakagawa, S. Tagami, “Refractive index ellipsoids of a polycarbonate magneto-optical memory disk substrate,” Jpn. J. Appl. Phys. 28, 797–800 (1989).
[CrossRef]

Polym. Eng. Sci. (1)

W. Siebourg, H. Schmid, F. M. Rateike, S. Abders, U. Grigo, “Birefringence—an important property of plastic substrates for magneto-optical storage disks,” Polym. Eng. Sci. 30, 1133–1139 (1990).
[CrossRef]

Other (4)

J. D. Jackson, Classic Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 278–284.

A. Yoshizawa, N. Matsubayashi, “Analysis of optical anisotropy of PC substrate for M-O disks and its effect on CNR,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 91–98 (1986).

D. Treves, D. S. Bloomberg, “Effect of birefringence on optical memory systems,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 262–269 (1986).

A. B. Marchant, “Retardation effects in magneto-optic readout,” in Optical Mass Data Storage II, R. P. Freese, A. A. Jamberdino, M. de Haan, eds., Proc. Soc. Photo-Opt. Instrum. Eng.695, 270–276 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the variable-angle ellipsometer; 14 wavelengths can be realized with various monochromatic filters. The Soleil–Babinet compensator is adjusted to serve as a QWP for each wavelength.

Fig. 2
Fig. 2

Diagrams showing (a) geometry used to calculate the phase difference, Δϕ sp , (b) that n p , the effective refractive index for the p component, is given by the cross section of the index ellipsoid.

Fig. 3
Fig. 3

Measured in-plane birefringence, Δn , versus wavelength for PC3. B01 (○) and PCS.25B02 (△).

Fig. 4
Fig. 4

Measured rotation (circles) and ellipticity (triangles) and the best theoretical fit (solid curves) for PC3.5B01 at three different wavelengths: (a) λ = 450 nm, (b) λ = 633 nm, (c) λ = 780 nm.

Fig. 5
Fig. 5

(a) VB, Δn , and (b) refractive index, n, versus wavelength for PC3.5B03 (circles) and PC5.25B02 (triangles). One obtains the solid and dashed curves by fitting the data to third-order polynomial.

Tables (2)

Tables Icon

Table 1 In-Plane Birefringence Versus Wavelength

Tables Icon

Table 2 Vertical Birefringence and Refractive Index Versus Wavelength

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n p 2 cos 2 θ p n r 2 + n p 2 sin 2 θ p n z 2 = 1.
n p = [ n r 2 - ( n r 2 - n z 2 ) n 0 2 sin 2 Θ inc n z 2 ] 1 / 2 ,
Δ ϕ s p = 2 π λ ( A B + B C - A D ) = 2 π λ [ n s d cos θ s + d ( tan θ p - tan θ s ) n 0 sin Θ inc - n p d cos θ p ] .
Δ ϕ s p = 2 π d λ ( n s - n p ) cos θ p + 2 π d λ [ n s ( 1 cos θ s - 1 cos θ p ) + ( tan θ p - tan θ s ) n 0 sin Θ inc ] .
Δ Φ s p = 2 π d λ cos     Θ [ - Δ n cos 2 Θ + Δ n sin 2 Θ ] .
E s ref E p ref = T s inc R s T s out T p inc R p T p out exp [ 2 i Δ ϕ s p ] tan ψ pol ,
E s ref E p ref = ( n cos Θ inc + n 0 cos Θ n 0 cos Θ inc + n cos Θ ) 2 × ( n cos Θ - i γ ) ( cos Θ + i n γ ) ( n cos Θ + i γ ) ( cos Θ - i n γ ) × exp [ 2 i Δ Φ s p ] tan ψ pol ,
Δ n = λ max 180 d ,
Δ n = a 0 + a 1 λ + a 2 λ 2 + a 3 λ 3 , n = b 0 + b 1 λ + b 2 λ 2 + b 3 λ 3 .

Metrics