Abstract

To understand better the optical characteristics and autofluorescence properties of normal and carcinomatous bronchial tissue, we measured the absorption coefficient, scattering coefficient, and anisotropy factor from 400 to 700 nm. We made the measurements by using an integrating sphere with a collimated white-light beam to measure total reflectance and transmittance of samples. The unscattered transmittance of the samples was measured through polarized on-axis light detection. The inverse adding-doubling solution was utilized to solve the equation of radiative transfer and to determine the absorption coefficient and reduced scattering coefficient. The scattering coefficient and anisotropy factor were derived from the unscattered transmittance of the sample and the reduced scattering coefficient. The measured parameters allow us to simulate photon propagation in normal bronchial and tumoral tissue by using Monte Carlo modeling.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  2. G. Yoon, A. J. Welch, M. Motamedi, M. C. J. V. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
    [CrossRef]
  3. R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan, J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147–194.
    [CrossRef]
  4. L. E. Preuss, F. P. Bolin, B. W. Cain, “Tissue as a medium for laser light transport—implications for photoradiation therapy,” in Lasers in Medicine and Surgery, L. Goldman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.357, 77–84 (1982).
  5. F. H. Long, N. S. Nishioka, T. F. Deutsch, “Measurement of optical and thermal properties of biliary calculi using pulsed photothermal radiometry,” Lasers Surg. Med. 7, 461–466 (1987).
    [CrossRef] [PubMed]
  6. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
    [CrossRef] [PubMed]
  7. R. Splinter, W. F. Cheong, M. J. C. van Gemert, A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissue at 633 nm,” Lasers Surg. Med. 9, 37–41 (1989).
    [CrossRef] [PubMed]
  8. J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
    [CrossRef]
  9. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  10. J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  11. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
    [CrossRef] [PubMed]
  12. L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T. T. Tsay, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–265 (1993).
    [CrossRef]
  13. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
    [CrossRef]
  14. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  15. J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
    [CrossRef] [PubMed]
  16. F. C. MacKintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
    [CrossRef]
  17. K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
    [CrossRef]
  18. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photon in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [CrossRef] [PubMed]
  19. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirolo, “Extinction and absorption coefficients and scattering phase functions of the human lung in vitro,” Appl. Opt. 28, 2318–2324(1989).
    [CrossRef] [PubMed]
  20. I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–486 (1993).
    [CrossRef] [PubMed]
  21. S. A. Prahl, “Light transportation in tissue,” Ph.D. dissertation (University of Texas at Austin, Austin, Tex., 1990).
  22. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1993).
    [CrossRef]

1993 (7)

1992 (1)

1990 (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

1989 (6)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
[CrossRef]

R. Splinter, W. F. Cheong, M. J. C. van Gemert, A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissue at 633 nm,” Lasers Surg. Med. 9, 37–41 (1989).
[CrossRef] [PubMed]

R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirolo, “Extinction and absorption coefficients and scattering phase functions of the human lung in vitro,” Appl. Opt. 28, 2318–2324(1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

1987 (4)

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

G. Yoon, A. J. Welch, M. Motamedi, M. C. J. V. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

F. H. Long, N. S. Nishioka, T. F. Deutsch, “Measurement of optical and thermal properties of biliary calculi using pulsed photothermal radiometry,” Lasers Surg. Med. 7, 461–466 (1987).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Alfano, R. R.

K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
[CrossRef]

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Anderson, R. R.

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan, J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

Andreola, S.

Beek, J. F.

Bertoni, A.

Blokland, P.

Bolin, F. P.

L. E. Preuss, F. P. Bolin, B. W. Cain, “Tissue as a medium for laser light transport—implications for photoradiation therapy,” in Lasers in Medicine and Surgery, L. Goldman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.357, 77–84 (1982).

Bonner, R. F.

Bosman, S.

Cain, B. W.

L. E. Preuss, F. P. Bolin, B. W. Cain, “Tissue as a medium for laser light transport—implications for photoradiation therapy,” in Lasers in Medicine and Surgery, L. Goldman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.357, 77–84 (1982).

Chance, B.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

R. Splinter, W. F. Cheong, M. J. C. van Gemert, A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissue at 633 nm,” Lasers Surg. Med. 9, 37–41 (1989).
[CrossRef] [PubMed]

Cilesiz, I. F.

Dassel, A. C. M.

de Mul, F. F. M.

Deutsch, T. F.

F. H. Long, N. S. Nishioka, T. F. Deutsch, “Measurement of optical and thermal properties of biliary calculi using pulsed photothermal radiometry,” Lasers Surg. Med. 7, 461–466 (1987).
[CrossRef] [PubMed]

Feld, M. S.

Gandjbakhche, A. H.

Gemert, M. C. J. V.

G. Yoon, A. J. Welch, M. Motamedi, M. C. J. V. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

Graaff, R.

Haskell, R. C.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T. T. Tsay, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–265 (1993).
[CrossRef]

Jacques, S. L.

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Keijzer, M.

Koelink, M. H.

Long, F. H.

F. H. Long, N. S. Nishioka, T. F. Deutsch, “Measurement of optical and thermal properties of biliary calculi using pulsed photothermal radiometry,” Lasers Surg. Med. 7, 461–466 (1987).
[CrossRef] [PubMed]

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Marchesini, R.

Marijnissen, J. P. A.

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

Melloni, E.

Moes, C. J. M.

Motamedi, M.

G. Yoon, A. J. Welch, M. Motamedi, M. C. J. V. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

Nishioka, N. S.

F. H. Long, N. S. Nishioka, T. F. Deutsch, “Measurement of optical and thermal properties of biliary calculi using pulsed photothermal radiometry,” Lasers Surg. Med. 7, 461–466 (1987).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan, J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

Patterson, M. S.

Pickering, J. W.

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Posthumus, P.

Prahl, S. A.

Preuss, L. E.

L. E. Preuss, F. P. Bolin, B. W. Cain, “Tissue as a medium for laser light transport—implications for photoradiation therapy,” in Lasers in Medicine and Surgery, L. Goldman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.357, 77–84 (1982).

Richards-Kortum, R. R.

Schmitt, J. M.

Sichirolo, A. E.

Splinter, R.

R. Splinter, W. F. Cheong, M. J. C. van Gemert, A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissue at 633 nm,” Lasers Surg. Med. 9, 37–41 (1989).
[CrossRef] [PubMed]

Star, W. M.

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

Sterenborg, H. J. C. M.

Svaasand, L. O.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T. T. Tsay, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–265 (1993).
[CrossRef]

Tromberg, B. J.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T. T. Tsay, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–265 (1993).
[CrossRef]

Tsay, T. T.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T. T. Tsay, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–265 (1993).
[CrossRef]

van Gemert, M. J. C.

van Wierington, N.

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Welch, A. J.

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–486 (1993).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

R. Splinter, W. F. Cheong, M. J. C. van Gemert, A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissue at 633 nm,” Lasers Surg. Med. 9, 37–41 (1989).
[CrossRef] [PubMed]

G. Yoon, A. J. Welch, M. Motamedi, M. C. J. V. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

Wilson, B. C.

Yoo, K. M.

K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
[CrossRef]

Yoon, G.

G. Yoon, A. J. Welch, M. Motamedi, M. C. J. V. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Zijlstra, W. G.

Appl. Opt. (9)

R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirolo, “Extinction and absorption coefficients and scattering phase functions of the human lung in vitro,” Appl. Opt. 28, 2318–2324(1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photon in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wierington, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–486 (1993).
[CrossRef] [PubMed]

IEEE J. Quantum Electron (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron 26, 2166–2185 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Yoon, A. J. Welch, M. Motamedi, M. C. J. V. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lasers Life Sci. (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Lasers Med. Sci. (1)

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

Lasers Surg. Med. (2)

F. H. Long, N. S. Nishioka, T. F. Deutsch, “Measurement of optical and thermal properties of biliary calculi using pulsed photothermal radiometry,” Lasers Surg. Med. 7, 461–466 (1987).
[CrossRef] [PubMed]

R. Splinter, W. F. Cheong, M. J. C. van Gemert, A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissue at 633 nm,” Lasers Surg. Med. 9, 37–41 (1989).
[CrossRef] [PubMed]

Opt. Eng. (1)

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T. T. Tsay, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–265 (1993).
[CrossRef]

Phys. Lett. A (1)

K. M. Yoo, R. R. Alfano, “Time-resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A 142, 531–536 (1989).
[CrossRef]

Phys. Rev. B (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Other (3)

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan, J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

L. E. Preuss, F. P. Bolin, B. W. Cain, “Tissue as a medium for laser light transport—implications for photoradiation therapy,” in Lasers in Medicine and Surgery, L. Goldman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.357, 77–84 (1982).

S. A. Prahl, “Light transportation in tissue,” Ph.D. dissertation (University of Texas at Austin, Austin, Tex., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Histology and laser-induced fluorescence of bronchial tissue: (a) white-light imaging, (b) fluorescence imaging of the same section excited by the 435-nm line of a Hg lamp and filtered by a long-pass filter.

Fig. 2
Fig. 2

View of the A-A section of the tissue-sample holder.

Fig. 3
Fig. 3

Integrating sphere measurements: (a) collimated beam is incident upon the tissue for the total reflectance measurements; (b) collimated beam illuminates the sample from outside the sphere for the total transmittance measurements; (c) light beam is incident upon the sphere wall for the collection efficiency measurements of the sphere. In all cases a baffle was placed between the incident spot of the light beam and the detector.

Fig. 4
Fig. 4

Experimental setup for the measurements of total reflectance and transmittance.

Fig. 5
Fig. 5

Experimental setup for the measurements of the unscattered transmittance of the tissue; the optical table rail is not shown.

Fig. 6
Fig. 6

Typical total reflectance, total transmittance, and unscattered transmittance (dashed curve) of bronchial tissue: (a) epithelium, (b) submucosa, (c) cartilage, (d) tumor.

Fig. 7
Fig. 7

Optical properties of epithelium, submucosa, cartilage, and tumor versus wavelength over the 400–700 nm range: (a) scattering coefficient, μ s , of the epithelium (dashed curve indicates the extrapolated values), (b) absorption coefficient, μ a , of the epithelium (solid curve was obtained with a quadratic fitting function), (c) anisotropic factor, g, of the epithelium, (d) μ s of the submucosa, (e) μ a , of the submucosa, (f) g of the submucosa, (g) μ s of the cartilage, (h) μ a of the cartilage, (i) g of the cartilage, (j) μ s , of the tumor, (k) μ a of the tumor, (l) g of the tumor.

Fig. 8
Fig. 8

Transmittance of suspensions of 1-μm-diameter spheres in water: ●, on-axis transmittance; ■, transmittance measured by the polarized detection method. The solid curve is an exponential function fitted to the on-axis transmittance measured over the range of scattering coefficients from 0 to 16 cm−1.

Tables (2)

Tables Icon

Table 1 Published Optical Properties at Selected Wavelengths Compared with the Values in this Study

Tables Icon

Table 2 Coefficients μ a and μ s ′ Determined by IAD from the Corrected and Uncorrected Total Diffusion Reflectance

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R = R s - C b R o - C b ÷ C s - C b C o - C b ,
T = T s - T b C s - C b ,
T = T unscatter + T scattered ,
α = T scattered / T ,
μ t = - ln ( T - α T ) / d ,

Metrics