Abstract

A spectrum for the electro-optic coefficient of cadmium telluride measured from 3 to 14 μm is reported. The spectrum shows that the quantity n 3 r 41 has a nearly constant value of 1.09 × 10−10 m/V over this spectral band, with a slight (5%) dip at the weak absorption band centered at 6 μm. Measurements were performed with an infrared Mueller matrix spectropolarimeter. Transmission spectra of the Mueller matrix were acquired at a set of applied voltages. Retardance spectra were calculated from Mueller matrix spectra, and then the electro-optic coefficient was calculated at each wavelength by a least-squares fit to the resulting retardance as a function of voltage.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller Matrix Algorithms,” in Polarization Analysis and Measurement, R. A. Chipman, D. H. Goldstein, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).
  2. D. B. Chenault, “Infrared spectropolarimetry,” Ph.D. dissertation (University of Alabama, Huntsville, Al., 1992).
  3. D. B. Chenault, R. A. Chipman, “Infrared Spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1166, 254–266 (1989).
  4. D. B. Chenault, R. A. Chipman, K. M. Johnson, D. Doroski, “Infrared linear diattenuation and birefringence spectra of ferroelectric liquid crystals,” Opt. Lett. 17, 447–449 (1992).
    [CrossRef] [PubMed]
  5. D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).
  6. D. B. Chenault, R. A. Chipman, “Infrared birefringence spectra for cadmium sulfide and cadmium selenide,” Appl. Opt. 32, 4223–4227 (1993).
    [CrossRef] [PubMed]
  7. D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, 3513–3519 (1993).
    [CrossRef] [PubMed]
  8. A. Yariv, Optical Electronics (Holt, Rinehart & Winston, New York, 1985).
  9. H. E. Reedy, II-VI, Inc., Saxonburg, Pa. 16056 (personal communication), 1992.
  10. A. G. DeBell, E. L. Dereniak, J. Harvey, J. Nissley, J. Palmer, A. Selvarajan, W. L. Wolfe, “Cryogenic refractive indices and temperature coefficients of cadmium telluride from 6 μm to 22 μm,” Appl. Opt. 18, 3114–3115 (1979).
    [CrossRef] [PubMed]
  11. C. J. Johnson, G. H. Sherman, R. Weil, “Far infrared measurements of the dielectric properties of GaAs and CdTe at 300K and at 8K,” Appl. Opt. 8, 1667–1671 (1969).
    [CrossRef] [PubMed]
  12. D. H. Goldstein, “Polarization modulation in infrared electro-optic materials,” Ph.D. dissertation (University of Alabama, Huntsville, Al., 1990).
  13. G. L. Herrit, H. E. Reedy, “Electro-optic coefficient for gallium arsenide and cadmium telluride modulator rods,” in Optical Materials: Processing and Science, C. Ortiz, D. B. Poker, eds. (Materials Research Society, Pittsburgh, Pa., 1989).
  14. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978).
    [CrossRef] [PubMed]
  15. P. S. Hauge, “Mueller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. 68, 1519–1528 (1978).
    [CrossRef]
  16. D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. 4, 693–700 (1990).
    [CrossRef]
  17. The II-VI, Inc. operation and service manual, Saxonburg, Pa. 16056.
  18. G. L. Herrit, H. E. Reedy, “Methods for reducing stress birefringence in cadmium telluride electro-optic modulators,” J. Appl. Phys. 65, 393–395 (1989).
    [CrossRef]

1993 (2)

1992 (1)

1990 (1)

D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. 4, 693–700 (1990).
[CrossRef]

1989 (2)

G. L. Herrit, H. E. Reedy, “Methods for reducing stress birefringence in cadmium telluride electro-optic modulators,” J. Appl. Phys. 65, 393–395 (1989).
[CrossRef]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

1979 (1)

1978 (2)

1969 (1)

Azzam, R. M. A.

Chenault, D. B.

D. B. Chenault, R. A. Chipman, “Infrared birefringence spectra for cadmium sulfide and cadmium selenide,” Appl. Opt. 32, 4223–4227 (1993).
[CrossRef] [PubMed]

D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, 3513–3519 (1993).
[CrossRef] [PubMed]

D. B. Chenault, R. A. Chipman, K. M. Johnson, D. Doroski, “Infrared linear diattenuation and birefringence spectra of ferroelectric liquid crystals,” Opt. Lett. 17, 447–449 (1992).
[CrossRef] [PubMed]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller Matrix Algorithms,” in Polarization Analysis and Measurement, R. A. Chipman, D. H. Goldstein, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).

D. B. Chenault, “Infrared spectropolarimetry,” Ph.D. dissertation (University of Alabama, Huntsville, Al., 1992).

D. B. Chenault, R. A. Chipman, “Infrared Spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1166, 254–266 (1989).

Chipman, R. A.

D. B. Chenault, R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32, 3513–3519 (1993).
[CrossRef] [PubMed]

D. B. Chenault, R. A. Chipman, “Infrared birefringence spectra for cadmium sulfide and cadmium selenide,” Appl. Opt. 32, 4223–4227 (1993).
[CrossRef] [PubMed]

D. B. Chenault, R. A. Chipman, K. M. Johnson, D. Doroski, “Infrared linear diattenuation and birefringence spectra of ferroelectric liquid crystals,” Opt. Lett. 17, 447–449 (1992).
[CrossRef] [PubMed]

D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. 4, 693–700 (1990).
[CrossRef]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller Matrix Algorithms,” in Polarization Analysis and Measurement, R. A. Chipman, D. H. Goldstein, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).

D. B. Chenault, R. A. Chipman, “Infrared Spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1166, 254–266 (1989).

DeBell, A. G.

Dereniak, E. L.

Doroski, D.

Goldstein, D. H.

D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. 4, 693–700 (1990).
[CrossRef]

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

D. H. Goldstein, “Polarization modulation in infrared electro-optic materials,” Ph.D. dissertation (University of Alabama, Huntsville, Al., 1990).

Harvey, J.

Hauge, P. S.

Herrit, G. L.

G. L. Herrit, H. E. Reedy, “Methods for reducing stress birefringence in cadmium telluride electro-optic modulators,” J. Appl. Phys. 65, 393–395 (1989).
[CrossRef]

G. L. Herrit, H. E. Reedy, “Electro-optic coefficient for gallium arsenide and cadmium telluride modulator rods,” in Optical Materials: Processing and Science, C. Ortiz, D. B. Poker, eds. (Materials Research Society, Pittsburgh, Pa., 1989).

Johnson, C. J.

Johnson, K. M.

Nissley, J.

Palmer, J.

Pezzaniti, J. L.

D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller Matrix Algorithms,” in Polarization Analysis and Measurement, R. A. Chipman, D. H. Goldstein, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).

Reedy, H. E.

G. L. Herrit, H. E. Reedy, “Methods for reducing stress birefringence in cadmium telluride electro-optic modulators,” J. Appl. Phys. 65, 393–395 (1989).
[CrossRef]

G. L. Herrit, H. E. Reedy, “Electro-optic coefficient for gallium arsenide and cadmium telluride modulator rods,” in Optical Materials: Processing and Science, C. Ortiz, D. B. Poker, eds. (Materials Research Society, Pittsburgh, Pa., 1989).

H. E. Reedy, II-VI, Inc., Saxonburg, Pa. 16056 (personal communication), 1992.

Selvarajan, A.

Sherman, G. H.

Weil, R.

Wolfe, W. L.

Yariv, A.

A. Yariv, Optical Electronics (Holt, Rinehart & Winston, New York, 1985).

Appl. Opt. (4)

J. Appl. Phys. (1)

G. L. Herrit, H. E. Reedy, “Methods for reducing stress birefringence in cadmium telluride electro-optic modulators,” J. Appl. Phys. 65, 393–395 (1989).
[CrossRef]

J. Opt. Soc. Am. (2)

P. S. Hauge, “Mueller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. 68, 1519–1528 (1978).
[CrossRef]

D. H. Goldstein, R. A. Chipman, “Error analysis of Mueller matrix polarimeters,” J. Opt. Soc. Am. 4, 693–700 (1990).
[CrossRef]

Opt. Eng. (1)

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28, 120–125 (1989).

Opt. Lett. (2)

Other (8)

The II-VI, Inc. operation and service manual, Saxonburg, Pa. 16056.

D. H. Goldstein, “Polarization modulation in infrared electro-optic materials,” Ph.D. dissertation (University of Alabama, Huntsville, Al., 1990).

G. L. Herrit, H. E. Reedy, “Electro-optic coefficient for gallium arsenide and cadmium telluride modulator rods,” in Optical Materials: Processing and Science, C. Ortiz, D. B. Poker, eds. (Materials Research Society, Pittsburgh, Pa., 1989).

D. B. Chenault, J. L. Pezzaniti, R. A. Chipman, “Mueller Matrix Algorithms,” in Polarization Analysis and Measurement, R. A. Chipman, D. H. Goldstein, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).

D. B. Chenault, “Infrared spectropolarimetry,” Ph.D. dissertation (University of Alabama, Huntsville, Al., 1992).

D. B. Chenault, R. A. Chipman, “Infrared Spectropolarimetry,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1166, 254–266 (1989).

A. Yariv, Optical Electronics (Holt, Rinehart & Winston, New York, 1985).

H. E. Reedy, II-VI, Inc., Saxonburg, Pa. 16056 (personal communication), 1992.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transverse electro-optic modulator.

Fig. 2
Fig. 2

Mueller matrix of the CdTe modulator with no applied voltage.

Fig. 3
Fig. 3

Mueller matrix of the CdTe modulator with an applied voltage of 1800 V.

Fig. 4
Fig. 4

Mueller matrix of the CdTe modulator with an applied voltage of 2700 V.

Fig. 5
Fig. 5

Retardance as a function of wavelength and voltage.

Fig. 6
Fig. 6

Spectrum of n 3 r 41 calculated from retardance.

Fig. 7
Fig. 7

Linear regression of retardance as a function of voltage at 10.6 μm.

Fig. 8
Fig. 8

Retardance for zero applied voltage and intercept of regression.

Tables (3)

Tables Icon

Table 1 Refractive-lndex Data for CdTe

Tables Icon

Table 2 Previously Reported Electro-Optic Coefficient Data for CdTe at 10.6 μm

Tables Icon

Table 3 Measured Values of n 3 r 41

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ ( λ , V ) = 2 π n 3 ( λ ) r 41 ( λ ) V L λ d ,
V λ / 2 = d λ 2 n 3 ( λ ) r 41 ( λ ) L .
M r ( δ , θ ) = τ [ 1 0 0 0 0 C 4 sin 2 ( δ / 2 ) + cos 2 ( δ / 2 ) S 4 sin 2 ( δ / 2 ) - S 2 sin δ 0 S 4 sin 2 ( δ / 2 ) - C 4 sin 2 ( δ / 2 ) + cos 2 ( δ / 2 ) C 2 sin δ 0 S 2 sin δ - C 2 sin δ cos δ ] ,
δ = arccos ( m 44 ) ,
δ = arcsin [ ½ ( m 24 2 + m 34 2 + m 42 2 + m 43 2 ) ] 1 / 2 .
δ = arctan ( sin δ cos δ ) = arctan [ ( m 34 - m 43 ) 2 + ( m 42 - m 24 ) 2 2 m 44 ] 1 / 2 ,
n 3 r 41 = λ d 2 π L = m .

Metrics