Abstract

An integrated optical-disk pickup with a diffractive planar micro-optic system is proposed. In this device, the beam follows a zigzag optical path inside a glass substrate that is used as a light guide. To fabricate off-axis diffractive optical elements, we have recently developed an electron-beam writing system with a curve-pattern generator. It is demonstrated that a transmission off-axis objective microlens, a reflection twin-focusing beam splitter, and reflection layers were integrated on a glass substrate, and such a diffractive planar micro-optic system exhibited an excellent focusing performance and operated for focus-error signal detection, as designed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
    [CrossRef]
  2. S. Ura, T. Suhara, H. Nishihara, “Aberration characteristics of a focusing grating coupler in an integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
    [CrossRef] [PubMed]
  3. J. Jahns, A. Huang, “Planar integration of free space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  4. K. Yamamoto, K. Mizuuchi, Y. Kitaoka, M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
    [CrossRef]
  5. T. Shiono, H. Ogawa, “Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography,” Appl. Opt. 30, 3643–3649 (1991).
    [CrossRef] [PubMed]
  6. T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5, 33–36 (1987).
    [CrossRef]
  7. T. Shiono, M. Kitagawa, K. Setsune, T. Mitsuyu, “Reflection micro-Fresnel lenses and their use in an integrated focus sensor,” Appl. Opt. 28, 3434–3442 (1989).
    [CrossRef] [PubMed]

1993 (1)

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

1991 (1)

1989 (2)

1987 (2)

T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5, 33–36 (1987).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, “Aberration characteristics of a focusing grating coupler in an integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
[CrossRef] [PubMed]

1986 (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

Huang, A.

Jahns, J.

Kato, M.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Kitagawa, M.

Kitaoka, Y.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

Mitsuyu, T.

Mizuuchi, K.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Nishihara, H.

S. Ura, T. Suhara, H. Nishihara, “Aberration characteristics of a focusing grating coupler in an integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

Ogawa, H.

Setsune, K.

T. Shiono, M. Kitagawa, K. Setsune, T. Mitsuyu, “Reflection micro-Fresnel lenses and their use in an integrated focus sensor,” Appl. Opt. 28, 3434–3442 (1989).
[CrossRef] [PubMed]

T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5, 33–36 (1987).
[CrossRef]

Shiono, T.

Suhara, T.

S. Ura, T. Suhara, H. Nishihara, “Aberration characteristics of a focusing grating coupler in an integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

Ura, S.

S. Ura, T. Suhara, H. Nishihara, “Aberration characteristics of a focusing grating coupler in an integrated-optic disk pickup device,” Appl. Opt. 26, 4777–4782 (1987).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

Wasa, K.

T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5, 33–36 (1987).
[CrossRef]

Yamamoto, K.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Yamazaki, O.

T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5, 33–36 (1987).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

J. Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Computer-controlled electron-beam writing system for thin film micro-optics,” J. Vac. Sci. Technol. B 5, 33–36 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Construction of the proposed planar-optic-disk pickup: (a) side view, (b) plane figure.

Fig. 2
Fig. 2

Cross-sectional views for the design of (a) a transmission off-axis microlens, (b) a reflection-focusing beam splitter.

Fig. 3
Fig. 3

Block diagram of the computer-controlled electron-beam writing system. I/F, interface; D/A, digital–analog; EB, electron-beam.

Fig. 4
Fig. 4

Fabrication process of the diffractive planar micro-optic system. EB, electron beam; CMS, chloromethylated polystyrene; PMMA, poly(methyl methacrylate).

Fig. 5
Fig. 5

Microphotographs of the circular-aperture transmission off-axis diffractive microlens: (a) entire lens, (b) upper part of the lens.

Fig. 6
Fig. 6

Microphotographs of the blazed reflection-twin-focusing beam splitter: (a) whole splitter, (b) upper-right part of the splitter.

Fig. 7
Fig. 7

Focusing performance of the off-axis objective microlens shown in Fig. 5: (a) light spot, (b) intensity profile.

Fig. 8
Fig. 8

Experimental arrangement for the focus-error signal detection.

Fig. 9
Fig. 9

Focused spots observed at the bottom surface of the substrate when the mirror is placed just in the focal plane of the off-axis objective microlens.

Fig. 10
Fig. 10

Measured and theoretical optical performances of the focus-error signal detection.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Φ T ( x , y ) = 2 π λ [ ( x 2 + y 2 + f 2 ) 1 / 2 + n y sin θ - f ] - 2 m π ,
x 2 1 - n 2 sin 2 θ + ( y - y c m ) 2 = m 2 λ 2 + 2 f m λ + n 2 f 2 sin 2 θ ( 1 - n 2 sin 2 θ ) 2 ,
y c m = - n ( m λ + f ) sin θ 1 - n 2 sin 2 θ .
S y m / S x m = 1 / ( 1 - n 2 sin 2 θ ) 1 / 2 .
y ( x , m ) = y c m + [ - x 2 ( 1 - n 2 sin 2 θ ) + m 2 λ 2 + 2 f m λ + n 2 f 2 sin 2 θ ] 1 / 2 1 - n 2 sin 2 θ .
Λ m = y m ( x = 0 ) = λ 1 - n 2 sin 2 θ × [ - n sin θ + m λ + f ( m 2 λ 2 + 2 m λ f + f 2 n 2 sin 2 θ ) 1 / 2 ] .
Λ C = λ / ( n sin θ ) .
Φ R ( x , y ) = 2 n π λ [ ( x 2 + y 2 - 2 y f sin θ 1 + f 2 ) 1 / 2 + y sin θ - f ] - 2 m π .
x 2 cos 2 θ + ( y - y c m ) 2 = 1 cos 4 θ [ m 2 λ 2 n 2 + 2 f m λ n + f 2 ( sin θ 1 - sin θ ) 2 - 2 f m λ sin θ 1 sin θ n ] ,
y c m = 1 cos 2 θ [ f ( sin θ 1 - sin θ ) - m λ sin θ / n ] .
S y m / S x m = 1 / cos θ .
y ( x , m ) = y c m - 1 cos 2 θ [ - x 2 cos 2 θ + m 2 λ 2 n 2 + 2 f m λ n ( 1 - sin θ 1 sin θ ) + f 2 ( sin θ 1 - sin θ ) 2 ] 1 / 2 .
Λ m = λ n cos 2 θ { sin θ + m λ / n + f ( 1 - sin θ 1 sin θ ) [ m 2 λ 2 / n 2 + 2 m λ f ( 1 - sin θ 1 sin θ ) / n + f 2 ( sin θ 1 - sin θ ) 2 ] 1 / 2 } .
Λ C = λ / n ( sin θ 1 - sin θ ) .

Metrics