Abstract

We describe a system for fast three-dimensional profilometry, of both optically smooth and optically rough surfaces, based on scanning white-light techniques. The system utilizes an efficient algorithm to extract and save only the region of interference, substantially reducing both the acquisition and the analysis times. Rough and discontinuous surfaces can be profiled without the phase-ambiguity problems associated with conventional phase-shifting techniques. The system measures steps to 100 μm, scans a 10-μm range in 5 s, and has a smooth surface repeatability of 0.5 nm.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. de Groot, S. Kishner, “Synthetic wavelength stabilization for two-color laser-diode-interferometry,” Appl. Opt. 30, 4026–4033 (1991).
    [CrossRef] [PubMed]
  2. N. Balasubramanian, “Optical system for surface topography measurement,” U.S. patent4,340,306 (20July1982; filed 4 February 1980).
  3. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  4. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy: Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).
  5. T. Dresel, G. Haeusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef] [PubMed]
  6. G. S. Kino, S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  7. P. C. Montgomery, J. P. Fillard, “Peak fringe scanning microscopy (PFSM): submicron 3D measurement of semiconductor components,” in Interferometry: Techniques and Analysis, G. M. Brown, O. Y. Kwon, M. Kujawinska, G. T. Reid, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1755, 12–23 (1992).
  8. P. de Groot, L. Deck, “Surface profilometry by frequency-domain analysis of white light interferograms,” in Proceedings of the European Symposium on Optics for Productivity in Manufacturing (EUROPTO, Frankfurt, 1994), paper 2248-13.
  9. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
    [CrossRef] [PubMed]
  10. S. Chen, A. W. Palmer, K. T. V. Gratten, B. T. Meggit, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992).
    [CrossRef] [PubMed]
  11. P. de Groot, L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white light interferograms,” Opt. Lett. 18, 1462–1464 (1993).
    [CrossRef] [PubMed]
  12. B. L. Danielson, C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979(1991).
    [CrossRef] [PubMed]

1993 (2)

1992 (2)

1991 (2)

1990 (2)

Balasubramanian, N.

N. Balasubramanian, “Optical system for surface topography measurement,” U.S. patent4,340,306 (20July1982; filed 4 February 1980).

Boisrobert, C. Y.

Caber, P. J.

Chen, S.

Chim, S. C.

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy: Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Danielson, B. L.

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy: Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

de Groot, P.

P. de Groot, L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white light interferograms,” Opt. Lett. 18, 1462–1464 (1993).
[CrossRef] [PubMed]

P. de Groot, L. Deck, “Surface profilometry by frequency-domain analysis of white light interferograms,” in Proceedings of the European Symposium on Optics for Productivity in Manufacturing (EUROPTO, Frankfurt, 1994), paper 2248-13.

de Groot, P. J.

Deck, L.

P. de Groot, L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white light interferograms,” Opt. Lett. 18, 1462–1464 (1993).
[CrossRef] [PubMed]

P. de Groot, L. Deck, “Surface profilometry by frequency-domain analysis of white light interferograms,” in Proceedings of the European Symposium on Optics for Productivity in Manufacturing (EUROPTO, Frankfurt, 1994), paper 2248-13.

Dresel, T.

Fillard, J. P.

P. C. Montgomery, J. P. Fillard, “Peak fringe scanning microscopy (PFSM): submicron 3D measurement of semiconductor components,” in Interferometry: Techniques and Analysis, G. M. Brown, O. Y. Kwon, M. Kujawinska, G. T. Reid, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1755, 12–23 (1992).

Gratten, K. T. V.

Haeusler, G.

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy: Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Kino, G. S.

Kishner, S.

Lee, B. S.

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy: Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Meggit, B. T.

Montgomery, P. C.

P. C. Montgomery, J. P. Fillard, “Peak fringe scanning microscopy (PFSM): submicron 3D measurement of semiconductor components,” in Interferometry: Techniques and Analysis, G. M. Brown, O. Y. Kwon, M. Kujawinska, G. T. Reid, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1755, 12–23 (1992).

Palmer, A. W.

Strand, T. C.

Venzke, H.

Appl. Opt. (7)

Opt. Lett. (1)

Other (4)

N. Balasubramanian, “Optical system for surface topography measurement,” U.S. patent4,340,306 (20July1982; filed 4 February 1980).

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Microscopy: Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

P. C. Montgomery, J. P. Fillard, “Peak fringe scanning microscopy (PFSM): submicron 3D measurement of semiconductor components,” in Interferometry: Techniques and Analysis, G. M. Brown, O. Y. Kwon, M. Kujawinska, G. T. Reid, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1755, 12–23 (1992).

P. de Groot, L. Deck, “Surface profilometry by frequency-domain analysis of white light interferograms,” in Proceedings of the European Symposium on Optics for Productivity in Manufacturing (EUROPTO, Frankfurt, 1994), paper 2248-13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the SWLI profiler. PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Intensity history from a single pixel during a 100-μm scan when a broadband source is used. The intensity, digitized to 8-bit precision, versus the camera frame number is plotted during the scan.

Fig. 3
Fig. 3

Plot of the calculated discriminator for the pixel history shown in Fig. 2.

Fig. 4
Fig. 4

Representation of the circular buffer scheme implemented in the SWLI profiler for a buffer (Q) size of 16. For one pixel, the positions of the acquired intensity data near the interference region are shown as points on the curve at the bottom. The positions of a new peak in the discriminator are indicated with arrows. Directly above each point, the circular buffer contents (vertical rectangles) as well as the frame number, discriminator peak frame number, and buffer pointer are shown at that point in the acquisition.

Fig. 5
Fig. 5

Measurement of a 20.37-μm step-height standard measured with the SWLI profiler.

Fig. 6
Fig. 6

Measurement of a 921-nm-high grating with the SWLI profiler.

Metrics