Abstract

We describe a new LIDAR technique for middle atmospheric temperature measurement. The proposed LIDAR exploits the Fe layer in the 80–100-km altitude region. Absolute temperatures are inferred by the use of the Maxwell–Boltzmann relationship from the ratio of LIDAR returns from mesospheric Fe atoms excited at 372 and 374 nm, corresponding to the ground-state resonance line and a thermally populated resonance line, respectively. The wavelengths of the new LIDAR are favorable for capturing Rayleigh signals from the middle atmosphere. A simulation indicates that a complete temperature profile from 30 to 100 km can be acquired with the proposed LIDAR by monitoring simultaneously the Rayleigh signals and the Fe fluorescence returns excited by the same transmitter pulse.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Houghton, The Physics of Atmospheres (Cambridge U. Press, Cambridge, 1986).
  2. A. Hauchercorne, M. L. Chanin, P. Keckhut, P. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
    [CrossRef]
  3. C. S. Gardner, “Sodium resonance fluorescence LIDAR applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
    [CrossRef]
  4. C. Grainer, J. P. Jegou, G. Megie, “Iron atoms and metallic species in the Earth’s upper atmosphere,” Geophys. Res. Lett. 16, 243–246 (1989).
    [CrossRef]
  5. M. Alpers, J. Hoffner, U. von Zahn, “Iron atom densities in the polar mesosphere from LIDAR observations,” Geophys. Res. Lett. 17, 2345–2348 (1990).
    [CrossRef]
  6. T. J. Kane, P. H. Mui, C. S. Gardner, “Evidence for substantial seasonal variations in the structure of the mesospheric Fe layer,” Geophys. Res. Lett. 19, 405–408 (1992).
    [CrossRef]
  7. W. L. Wiese, G. A. Martin, “Wavelengths and transition probabilities for atoms and atomic ions,” Nat. Stand. Ref. Data Ser. 68, (National Bureau of Standards, Washington, D.C., 1980).
  8. J. R. Fuhr, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, October1993).
  9. M. L. Chanin, A. Hauchercorne, “LIDAR observation of gravity and tidal waves in the stratosphere and mesophere,” J. Geophys. Res. 86, 9715–9721 (1981).
    [CrossRef]
  10. P. Keckhut, A. Hauchercorne, M. L. Chanin, “A critical review of the data base acquired for long term surveillance of the middle atmosphere by the french rayleigh LIDARs,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
    [CrossRef]
  11. U.S. Standard Atmosphere (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).
  12. K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by LIDAR,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  13. C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
    [CrossRef] [PubMed]

1993 (1)

P. Keckhut, A. Hauchercorne, M. L. Chanin, “A critical review of the data base acquired for long term surveillance of the middle atmosphere by the french rayleigh LIDARs,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

1992 (3)

C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992).
[CrossRef] [PubMed]

A. Hauchercorne, M. L. Chanin, P. Keckhut, P. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

T. J. Kane, P. H. Mui, C. S. Gardner, “Evidence for substantial seasonal variations in the structure of the mesospheric Fe layer,” Geophys. Res. Lett. 19, 405–408 (1992).
[CrossRef]

1990 (1)

M. Alpers, J. Hoffner, U. von Zahn, “Iron atom densities in the polar mesosphere from LIDAR observations,” Geophys. Res. Lett. 17, 2345–2348 (1990).
[CrossRef]

1989 (2)

C. S. Gardner, “Sodium resonance fluorescence LIDAR applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

C. Grainer, J. P. Jegou, G. Megie, “Iron atoms and metallic species in the Earth’s upper atmosphere,” Geophys. Res. Lett. 16, 243–246 (1989).
[CrossRef]

1985 (1)

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by LIDAR,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

1981 (1)

M. L. Chanin, A. Hauchercorne, “LIDAR observation of gravity and tidal waves in the stratosphere and mesophere,” J. Geophys. Res. 86, 9715–9721 (1981).
[CrossRef]

Alpers, M.

M. Alpers, J. Hoffner, U. von Zahn, “Iron atom densities in the polar mesosphere from LIDAR observations,” Geophys. Res. Lett. 17, 2345–2348 (1990).
[CrossRef]

Bills, R. E.

Chanin, M. L.

P. Keckhut, A. Hauchercorne, M. L. Chanin, “A critical review of the data base acquired for long term surveillance of the middle atmosphere by the french rayleigh LIDARs,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

A. Hauchercorne, M. L. Chanin, P. Keckhut, P. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

M. L. Chanin, A. Hauchercorne, “LIDAR observation of gravity and tidal waves in the stratosphere and mesophere,” J. Geophys. Res. 86, 9715–9721 (1981).
[CrossRef]

Fricke, K. H.

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by LIDAR,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Fuhr, J. R.

J. R. Fuhr, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, October1993).

Gardner, C. S.

T. J. Kane, P. H. Mui, C. S. Gardner, “Evidence for substantial seasonal variations in the structure of the mesospheric Fe layer,” Geophys. Res. Lett. 19, 405–408 (1992).
[CrossRef]

C. S. Gardner, “Sodium resonance fluorescence LIDAR applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

Grainer, C.

C. Grainer, J. P. Jegou, G. Megie, “Iron atoms and metallic species in the Earth’s upper atmosphere,” Geophys. Res. Lett. 16, 243–246 (1989).
[CrossRef]

Hauchercorne, A.

P. Keckhut, A. Hauchercorne, M. L. Chanin, “A critical review of the data base acquired for long term surveillance of the middle atmosphere by the french rayleigh LIDARs,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

A. Hauchercorne, M. L. Chanin, P. Keckhut, P. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

M. L. Chanin, A. Hauchercorne, “LIDAR observation of gravity and tidal waves in the stratosphere and mesophere,” J. Geophys. Res. 86, 9715–9721 (1981).
[CrossRef]

Hoffner, J.

M. Alpers, J. Hoffner, U. von Zahn, “Iron atom densities in the polar mesosphere from LIDAR observations,” Geophys. Res. Lett. 17, 2345–2348 (1990).
[CrossRef]

Houghton, J. T.

J. T. Houghton, The Physics of Atmospheres (Cambridge U. Press, Cambridge, 1986).

Jegou, J. P.

C. Grainer, J. P. Jegou, G. Megie, “Iron atoms and metallic species in the Earth’s upper atmosphere,” Geophys. Res. Lett. 16, 243–246 (1989).
[CrossRef]

Kane, T. J.

T. J. Kane, P. H. Mui, C. S. Gardner, “Evidence for substantial seasonal variations in the structure of the mesospheric Fe layer,” Geophys. Res. Lett. 19, 405–408 (1992).
[CrossRef]

Keckhut, P.

P. Keckhut, A. Hauchercorne, M. L. Chanin, “A critical review of the data base acquired for long term surveillance of the middle atmosphere by the french rayleigh LIDARs,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

A. Hauchercorne, M. L. Chanin, P. Keckhut, P. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

Latifi, H.

Martin, G. A.

W. L. Wiese, G. A. Martin, “Wavelengths and transition probabilities for atoms and atomic ions,” Nat. Stand. Ref. Data Ser. 68, (National Bureau of Standards, Washington, D.C., 1980).

Megie, G.

C. Grainer, J. P. Jegou, G. Megie, “Iron atoms and metallic species in the Earth’s upper atmosphere,” Geophys. Res. Lett. 16, 243–246 (1989).
[CrossRef]

Mui, P. H.

T. J. Kane, P. H. Mui, C. S. Gardner, “Evidence for substantial seasonal variations in the structure of the mesospheric Fe layer,” Geophys. Res. Lett. 19, 405–408 (1992).
[CrossRef]

Nedeljkovic, P.

A. Hauchercorne, M. L. Chanin, P. Keckhut, P. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

She, C. Y.

von Zahn, U.

M. Alpers, J. Hoffner, U. von Zahn, “Iron atom densities in the polar mesosphere from LIDAR observations,” Geophys. Res. Lett. 17, 2345–2348 (1990).
[CrossRef]

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by LIDAR,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Wiese, W. L.

W. L. Wiese, G. A. Martin, “Wavelengths and transition probabilities for atoms and atomic ions,” Nat. Stand. Ref. Data Ser. 68, (National Bureau of Standards, Washington, D.C., 1980).

Yu, J. R.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Hauchercorne, M. L. Chanin, P. Keckhut, P. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992).
[CrossRef]

Geophys. Res. Lett. (3)

C. Grainer, J. P. Jegou, G. Megie, “Iron atoms and metallic species in the Earth’s upper atmosphere,” Geophys. Res. Lett. 16, 243–246 (1989).
[CrossRef]

M. Alpers, J. Hoffner, U. von Zahn, “Iron atom densities in the polar mesosphere from LIDAR observations,” Geophys. Res. Lett. 17, 2345–2348 (1990).
[CrossRef]

T. J. Kane, P. H. Mui, C. S. Gardner, “Evidence for substantial seasonal variations in the structure of the mesospheric Fe layer,” Geophys. Res. Lett. 19, 405–408 (1992).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

P. Keckhut, A. Hauchercorne, M. L. Chanin, “A critical review of the data base acquired for long term surveillance of the middle atmosphere by the french rayleigh LIDARs,” J. Atmos. Oceanic Technol. 10, 850–867 (1993).
[CrossRef]

J. Atmos. Terr. Phys. (1)

K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by LIDAR,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Geophys. Res. (1)

M. L. Chanin, A. Hauchercorne, “LIDAR observation of gravity and tidal waves in the stratosphere and mesophere,” J. Geophys. Res. 86, 9715–9721 (1981).
[CrossRef]

Proc. IEEE (1)

C. S. Gardner, “Sodium resonance fluorescence LIDAR applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[CrossRef]

Other (4)

J. T. Houghton, The Physics of Atmospheres (Cambridge U. Press, Cambridge, 1986).

W. L. Wiese, G. A. Martin, “Wavelengths and transition probabilities for atoms and atomic ions,” Nat. Stand. Ref. Data Ser. 68, (National Bureau of Standards, Washington, D.C., 1980).

J. R. Fuhr, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, October1993).

U.S. Standard Atmosphere (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Partial energy-level diagram for atomic Fe.

Fig. 2
Fig. 2

Theoretical temperature sensitivity of the Fe Boltzmann factor LIDAR (solid curve), the Na Doppler temperature LIDAR (dotted–dashed curve), and the Rayleigh LIDAR (dashed line).

Fig. 3
Fig. 3

LIDAR simulation of the middle atmospheric signals expected at the primary Fe resonance line (solid curve), the temperature-sensitive Fe resonance line (dashed–dotted curve), and the Rayleigh LIDAR (dashed curve).

Tables (1)

Tables Icon

Table 1 Comparison of Upper Mesospheric Temperature LIDARs

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n ( J = 3 ) / n ( J = 4 ) = ( g 2 / g 1 ) exp ( - Δ E / k T ) ,
S = ( E / h ν ) n σ L ( A r / 4 π z 2 ) T a 2 T o η ,
σ = ( 2 / Δ ν D ) ln 2 / π ( λ 2 / 8 π ) ( g u / g l ) A ,
[ S ( λ ex = 374 nm ) / S ( λ ex = 372 nm ) ] = ( λ 2 σ 2 g 2 / λ 1 σ 1 g 1 ) exp ( - Δ E / k T ) .
[ S ( λ ex = 374 nm ) / S ( λ ex = 372 n m ) ] = 0.73 exp ( - Δ E / k T ) .
S T ( Δ S / S ) / ( Δ T / T ) .
d n ( J = 3 ) / n ( J = 3 ) = ( Δ E / k T ) d T / T .
S ( δ ) = ( δ S T ) - 2 .
S ( λ ex = 374 nm ) = 24 counts ,             S ( λ ex = 372 nm ) = 670 counts .
P ( 374 nm ) / P ( 589 nm ) = [ n Fe ( J = 3 ) σ ( 374 nm ) η ( 374 nm ) ] / [ n Na σ c ( 589 nm ) η ( 589 nm ) ] .

Metrics