Abstract

We describe a new LIDAR technique for middle atmospheric temperature measurement. The proposed LIDAR exploits the Fe layer in the 80–100-km altitude region. Absolute temperatures are inferred by the use of the Maxwell–Boltzmann relationship from the ratio of LIDAR returns from mesospheric Fe atoms excited at 372 and 374 nm, corresponding to the ground-state resonance line and a thermally populated resonance line, respectively. The wavelengths of the new LIDAR are favorable for capturing Rayleigh signals from the middle atmosphere. A simulation indicates that a complete temperature profile from 30 to 100 km can be acquired with the proposed LIDAR by monitoring simultaneously the Rayleigh signals and the Fe fluorescence returns excited by the same transmitter pulse.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription