Abstract

An open path diode laser sensor was constructed with near-infrared diode lasers and two-tone frequency-modulation spectroscopy. The sensor incorporates several novel features (such as digital signal-processing algorithms, a computerized line-locking routine, and discontinuous wavelength scanning) that are important in a field instrument. The sensor was used to monitor oxygen, water, and carbon dioxide in the near-infrared spectral range. For oxygen, an absorbance detection sensitivity of 2 × 10−6 in a 10-Hz bandwidth was demonstrated with a GaALAs laser at 760.56 nm. The stability of the sensor was 0.1% over a period of 10 h when an absorbance of 6 × 10−3 was monitored.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  2. J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Precision spectroscopy and laser frequency control using FM sideband optical heterodyne techniques,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  3. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum limited laser frequency modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1525 (1985).
    [CrossRef]
  4. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of line shapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  5. D. E. Coooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
    [CrossRef]
  6. D. E. Cooper, J. P. Watjen, “Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser,” Opt. Lett. 11, 606–608 (1987).
    [CrossRef]
  7. W. Lenth, “Optical heterodyne spectroscopywith a frequency-and amplitide-modulated semiconductor laser,” Opt. Lett. 8, 575–577 (1983).
    [CrossRef] [PubMed]
  8. G. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. 3, 1070–1074 (1986).
    [CrossRef]
  9. D. E. Cooper, R. E. Warren, “Two-tone optical heterodyne spectroscopy with a lead-salt diode laser: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
    [CrossRef]
  10. P. Werle, F. Slemr, M. Gehrtz, C. Braeuchle, “Quantum limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
    [CrossRef]
  11. C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
    [CrossRef] [PubMed]
  12. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-frequency modulation spectroscopy with a lead-salt diode laser,” Opt. Lett. 11, 132–134 (1986).
    [CrossRef] [PubMed]
  13. C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
    [CrossRef]
  14. D. E. Cooper, C. B. Carlisle, “Two-tone frequency-modulation spectroscopy with a CO2 laser,” J. Opt. Soc. Am. B 7, 164–171 (1990).
    [CrossRef]
  15. T. J. Johnson, F. G. Wienhold, J. P. Burows, G. W. Harris, “Frequency modulation spectroscopyat 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
    [CrossRef] [PubMed]
  16. P. Werle, R. Mucke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [CrossRef]
  17. P. Werle, R. Mucke, F. Slemr, “Development of a prototype IR-FM absorption spectrometer: design criteria and system performance,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 169.
  18. C. R. Webster, “Brewster plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable laser absorption,” J. Opt. Soc. Am. B 2, 1464–1470 (1985).
    [CrossRef]
  19. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
    [CrossRef] [PubMed]
  20. J. A. Silver, A. C. Stanton, “Optical interference reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
    [CrossRef] [PubMed]
  21. E. A. Whittaker, C. M. Shum, H. Grebel, H. Lotem, “Reduction of residual amplitude modulation by using harmonic frequency modulation,” J. Opt. Soc. Am. B 5, 1253–1256 (1988).
    [CrossRef]
  22. L. G. Wang, D. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
    [CrossRef]
  23. H. C. Sun, E. A. Whittaker, “Novel étalon fringe rejection technique for laser absorption spectroscopy,” Appl. Opt. 31, 4998–5002 (1992).
    [CrossRef] [PubMed]
  24. W. H. Press, B. P. Flanner, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1991), Chap. 12, p. 398.
  25. W. A. Gardner, Introduction to Random Processes (Macmillan, New York, 1986), Chap. 11, p. 238.
  26. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 8, p. 267.
  27. R. H. Shumway, Applied Statistical Time Series Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1988), Chap. 3, p. 117.
  28. H. Riris, C. B. Carlisle, R. E. Warren, D. E. Cooper, “Signal-to-noise ratio enhancement in frequency-modulation spectrometers by digital signal processing,” Opt. Lett. 19, 144–146 (1994).
    [CrossRef] [PubMed]
  29. A. Gelb, ed., Applied Optimal Estimation (MIT Press, Cambridge, Mass., 1974), Chap. 4, p. 102.
  30. R. E. Warren, “Concentration estimation from differential absorption lidar using nonstationary Wiener filtering,” Appl. Opt. 28, 5047–5051 (1989).
    [CrossRef] [PubMed]
  31. A Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993).
    [CrossRef] [PubMed]
  32. A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 3.
  33. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [CrossRef]
  34. R. Warren, “Adaptive Kalman–Bucy filter for differential absorption lidar series data,” Appl. Opt. 26, 4755–4760 (1987).
    [CrossRef] [PubMed]
  35. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camry-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. Smith, “The hitran data base: 1986 edition,” Appl. Opt. 26, 4058–4097(1987).
    [CrossRef] [PubMed]
  36. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
    [CrossRef] [PubMed]
  37. M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
    [CrossRef]

1994 (1)

1993 (2)

A Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993).
[CrossRef] [PubMed]

P. Werle, R. Mucke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

1992 (1)

1991 (1)

1990 (3)

1989 (5)

1988 (2)

1987 (5)

1986 (2)

G. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. 3, 1070–1074 (1986).
[CrossRef]

M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-frequency modulation spectroscopy with a lead-salt diode laser,” Opt. Lett. 11, 132–134 (1986).
[CrossRef] [PubMed]

1985 (3)

1983 (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of line shapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

W. Lenth, “Optical heterodyne spectroscopywith a frequency-and amplitide-modulated semiconductor laser,” Opt. Lett. 8, 575–577 (1983).
[CrossRef] [PubMed]

1981 (1)

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Precision spectroscopy and laser frequency control using FM sideband optical heterodyne techniques,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

1980 (1)

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Precision spectroscopy and laser frequency control using FM sideband optical heterodyne techniques,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Barbe, A.

Bjorklund, G. C.

Braeuchle, C.

P. Werle, F. Slemr, M. Gehrtz, C. Braeuchle, “Quantum limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Brown, L. R.

Bruce, D. M.

Burows, J. P.

Camry-Peyret, C.

Carlisle, C. B.

Cassidy, D. T.

Coooper, D. E.

Cooper, D. E.

Drummond, J. R.

A Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993).
[CrossRef] [PubMed]

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 3.

Flanner, B. P.

W. H. Press, B. P. Flanner, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1991), Chap. 12, p. 398.

Flaud, J. M.

Fox, J.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 3.

Fried, A

Fried, A.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 3.

Gallagher, T. F.

Gamache, R. R.

Gardner, W. A.

W. A. Gardner, Introduction to Random Processes (Macmillan, New York, 1986), Chap. 11, p. 238.

Gehrtz, M.

Goldman, A.

Grebel, H.

Hall, J. L.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Precision spectroscopy and laser frequency control using FM sideband optical heterodyne techniques,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Harris, G. W.

Henry, B.

A Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993).
[CrossRef] [PubMed]

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 3.

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Precision spectroscopy and laser frequency control using FM sideband optical heterodyne techniques,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Husson, N.

Jain, A. K.

A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 8, p. 267.

Janik, G.

G. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. 3, 1070–1074 (1986).
[CrossRef]

Johnson, T. J.

Johnston, H. S.

Kroll, M.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Lenth, W.

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of line shapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Lotem, H.

McClintock, J. A.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Mucke, R.

P. Werle, R. Mucke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

P. Werle, R. Mucke, F. Slemr, “Development of a prototype IR-FM absorption spectrometer: design criteria and system performance,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 169.

Ollinger, O.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of line shapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Pickett, H. M.

Poynter, R. L.

Preier, H.

Press, W. H.

W. H. Press, B. P. Flanner, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1991), Chap. 12, p. 398.

Rinsland, C. P.

Riris, H.

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Precision spectroscopy and laser frequency control using FM sideband optical heterodyne techniques,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Rothman, L. S.

Sams, R.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 3.

Shum, C. M.

Shumway, R. H.

R. H. Shumway, Applied Statistical Time Series Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1988), Chap. 3, p. 117.

Silver, J. A.

Slemr, F.

P. Werle, R. Mucke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

P. Werle, F. Slemr, M. Gehrtz, C. Braeuchle, “Quantum limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

P. Werle, R. Mucke, F. Slemr, “Development of a prototype IR-FM absorption spectrometer: design criteria and system performance,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 169.

Smith, M. A.

Stanton, A. C.

Sun, H. C.

Tate, D.

Teukolsky, S. A.

W. H. Press, B. P. Flanner, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1991), Chap. 12, p. 398.

Toth, R. A.

Vetterling, W. T.

W. H. Press, B. P. Flanner, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1991), Chap. 12, p. 398.

Wang, L. G.

Warren, R.

Warren, R. E.

Watjen, J. P.

Webster, C. R.

Werle, P.

P. Werle, R. Mucke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

P. Werle, F. Slemr, M. Gehrtz, C. Braeuchle, “Quantum limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

P. Werle, R. Mucke, F. Slemr, “Development of a prototype IR-FM absorption spectrometer: design criteria and system performance,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 169.

Whittaker, E. A.

Wienhold, F. G.

Young, A. T.

Appl. Opt. (10)

D. E. Coooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camry-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. Smith, “The hitran data base: 1986 edition,” Appl. Opt. 26, 4058–4097(1987).
[CrossRef] [PubMed]

R. Warren, “Adaptive Kalman–Bucy filter for differential absorption lidar series data,” Appl. Opt. 26, 4755–4760 (1987).
[CrossRef] [PubMed]

C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

R. E. Warren, “Concentration estimation from differential absorption lidar using nonstationary Wiener filtering,” Appl. Opt. 28, 5047–5051 (1989).
[CrossRef] [PubMed]

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
[CrossRef] [PubMed]

T. J. Johnson, F. G. Wienhold, J. P. Burows, G. W. Harris, “Frequency modulation spectroscopyat 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
[CrossRef] [PubMed]

A Fried, B. Henry, J. R. Drummond, “Tunable diode laser ratio measurements of atmospheric constituents employing dual fitting analysis and jump scanning,” Appl. Opt. 32, 821–827 (1993).
[CrossRef] [PubMed]

H. C. Sun, E. A. Whittaker, “Novel étalon fringe rejection technique for laser absorption spectroscopy,” Appl. Opt. 31, 4998–5002 (1992).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Optical interference reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988).
[CrossRef] [PubMed]

Appl. Phys. B (3)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of line shapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

P. Werle, F. Slemr, M. Gehrtz, C. Braeuchle, “Quantum limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

P. Werle, R. Mucke, F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Appl. Phys. Lett. (3)

C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Precision spectroscopy and laser frequency control using FM sideband optical heterodyne techniques,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

G. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. 3, 1070–1074 (1986).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Lett. (6)

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Other (7)

P. Werle, R. Mucke, F. Slemr, “Development of a prototype IR-FM absorption spectrometer: design criteria and system performance,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 169.

W. H. Press, B. P. Flanner, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1991), Chap. 12, p. 398.

W. A. Gardner, Introduction to Random Processes (Macmillan, New York, 1986), Chap. 11, p. 238.

A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 8, p. 267.

R. H. Shumway, Applied Statistical Time Series Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1988), Chap. 3, p. 117.

A. Gelb, ed., Applied Optimal Estimation (MIT Press, Cambridge, Mass., 1974), Chap. 4, p. 102.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Bettner, M. Tacke, G. Restelli, eds. (Kluwer, Dordecht, The Netherlands, 1991), p. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: LO, local oscillator; A/DC, analog-to-digital converter.

Fig. 2
Fig. 2

Real-time display of the OPS.

Fig. 3
Fig. 3

Graphic display used for locking the laser wavelength.

Fig. 4
Fig. 4

Discontinuous scanning of the diode laser wavelength.

Fig. 5
Fig. 5

Application of matched filtering and a linear least-squares fit to an oxygen vapor absorption line at 760.61 nm.

Fig. 6
Fig. 6

Application of Kalman filtering to CL values.

Fig. 7
Fig. 7

Stability of the OPS.

Tables (1)

Tables Icon

Table 1 Projected Sensitivity of Near-infrared Diode Laser FM Spectrometer to Select Molecules

Metrics