Abstract

A differential absorption lidar system for routine profiling of tropospheric ozone for daytime and nighttime operation is described. The system uses stimulated Raman scattering in hydrogen and deuterium of 266-nm radiation from a quadrupled Nd:YAG laser. Ozone profiles from altitudes of 600 m to approximately 5 km have been obtained with analog detection. Implementing corrections for differential Rayleigh scattering, differential absorption from oxygen, sulphur dioxide, and nitrogen dioxide, and differential aerosol extinction and backscatter can reduce the total system inaccuracy to 5–15% for a clear day and 20–30% for a hazy day, except at the top of the mixed layer. Photon counting must be installed to increase the measurement range from 5 to 15 km. An example of an application of routine measurements of tropospheric ozone profiles is given.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kley, I. S. A. Isaksen, S. A. Penkett, “TOR, tropospheric ozone research,” EUREKA subproject proposal (EURO-TRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).
  2. R. Barbini, M. J. T. Milton, J. Pelon, C. Weitkamp, “TESLAS, Joint European Program for the Tropospheric Environmental Studies by Laser Sounding,” EUROTRAC subproject proposal (EUROTRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).
  3. I. S. McDermid, “Ground-based lidar and atmospheric studies,” Surv. Geophys. 9, 107–122 (1987).
    [CrossRef]
  4. J. A. Sunesson, “RIVM tropospheric ozone lidar: feasibility and definition,” RIVM-Rep. 222201002 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).
  5. J. A. Sunesson, A. Apituley, “RIVM Tropospheric Ozone Lidar: system description and first results,” RIVM-Rep. 222201006 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).
  6. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  7. H. Edner, G. W. Faris, J. A. Sunesson, S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989).
    [CrossRef] [PubMed]
  8. K. W. Rothe, U. Brinkmann, H. Walther, “Remote measurement of NO2 emission from a chemical factory by the differential absorption technique,” Appl. Phys. 4, 181–182 (1974).
    [CrossRef]
  9. J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-based ultraviolet differential absorption lidar (DIAL) system and measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, Berlin, 1983), Chap. 3.
  10. H. Edner, J. A. Sunesson, S. Svanberg, “NO plume mapping by laser-radar techniques,” Opt. Lett. 13, 704–706 (1988).
    [CrossRef] [PubMed]
  11. E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, W. M. Hall, “NASA multipurpose airborne dial system and measurements of ozone and aerosol profiles,” Appl. Opt. 22, 522–534 (1983).
    [CrossRef] [PubMed]
  12. J. Pelon, G. Megie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
    [CrossRef]
  13. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential-absorption-lidar measurement of tropospheric ozone with an excimer-Raman hybrid laser,” Opt. Lett. 8, 347–349 (1983).
    [CrossRef] [PubMed]
  14. A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1989).
    [CrossRef]
  15. D. Diebel, M. Bristow, R. Zimmerman, “Stokes shifte Raman laser lines in KrF-pumped hydrogen: reduction of beam divergence by addition of helium,” Appl. Opt. 30, 626–628 (1991).
    [CrossRef] [PubMed]
  16. A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
    [CrossRef]
  17. G. Kunz, F. Swart, “Light source for dynamic testing of photo detectors,” TNO-Rep. FEL 1989–69 (TNO, Den Haag, The Netherlands, 1989).
  18. C. N. de Jonge, D. P. J. Swart, J. B. Bergwerff, “DIAL technique for NO2-detection: system quality and simulation,” RIVM-Rep. 222701001 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1991).
  19. Y. Likura, N. Sugimoto, Y. Sasano, H. Shimizu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt. 26, 5299–5306 (1987).
    [CrossRef] [PubMed]
  20. H. Sang Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990).
    [CrossRef]
  21. R. E. W. Pettifer, “Signal induced noise in lidar experiments,” J. Atmos. Terr. Phys. 37, 669–673 (1975).
    [CrossRef]
  22. I. S. McDermid, S. M. Godin, D. T. Walsh, “Lidar measurements of stratospheric ozone and intercomparisons and validation,” Appl. Opt. 29, 4914–4923 (1989).
    [CrossRef]
  23. A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone. I. The measurements,” in Atmospheric Ozone, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1984), pp. 606–610.
  24. A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone” (National Bureau of Standards, Washington, D.C. 20234, personal communication, 10August1992).
  25. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  26. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1976).
  27. M. W. P. Cann, J. B. Shinn, R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984).
    [CrossRef]
  28. E. Trakhovsky, A. Ben-Shalom, U. P. Oppenheim, A. D. Devir, L. S. Balfour, M. Engel, “Contribution of oxygen to attenuation in the solar blind UV spectral region,” Appl. Opt. 28, 1588–1591 (1989).
    [CrossRef] [PubMed]
  29. O. Thomsen, “Messung des Absorptionswirkungsquerschnitts von Schwefeldioxid im Wellenlangebereich von 265 bis 298 nm,” Ph.D. dissertation (GKSS Forschungszentrum, Geesthacht, Germany, 1990).
  30. A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
    [CrossRef]
  31. Laboratory of Air Research, “Luchtkwaliteit, jaarverslag 1989 (air quality, annual report 1989),” RIVM-Rep. 222101006 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).
  32. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).
  33. H. de Backer, E. P. Visser, D. de Muer, D. P. J. Swart, “Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994).
    [CrossRef]

1994 (1)

H. de Backer, E. P. Visser, D. de Muer, D. P. J. Swart, “Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994).
[CrossRef]

1991 (1)

1990 (1)

1989 (4)

1988 (2)

H. Edner, J. A. Sunesson, S. Svanberg, “NO plume mapping by laser-radar techniques,” Opt. Lett. 13, 704–706 (1988).
[CrossRef] [PubMed]

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

1987 (2)

1985 (1)

1984 (1)

M. W. P. Cann, J. B. Shinn, R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984).
[CrossRef]

1983 (2)

1982 (1)

J. Pelon, G. Megie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

1976 (1)

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

1975 (1)

R. E. W. Pettifer, “Signal induced noise in lidar experiments,” J. Atmos. Terr. Phys. 37, 669–673 (1975).
[CrossRef]

1974 (1)

K. W. Rothe, U. Brinkmann, H. Walther, “Remote measurement of NO2 emission from a chemical factory by the differential absorption technique,” Appl. Phys. 4, 181–182 (1974).
[CrossRef]

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

Allen, R. J.

Ancellet, G.

Apituley, A.

J. A. Sunesson, A. Apituley, “RIVM Tropospheric Ozone Lidar: system description and first results,” RIVM-Rep. 222201006 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).

Balfour, L. S.

Barbini, R.

R. Barbini, M. J. T. Milton, J. Pelon, C. Weitkamp, “TESLAS, Joint European Program for the Tropospheric Environmental Studies by Laser Sounding,” EUROTRAC subproject proposal (EUROTRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

Bass, A. M.

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone. I. The measurements,” in Atmospheric Ozone, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1984), pp. 606–610.

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone” (National Bureau of Standards, Washington, D.C. 20234, personal communication, 10August1992).

Ben-Shalom, A.

Bergwerff, J. B.

C. N. de Jonge, D. P. J. Swart, J. B. Bergwerff, “DIAL technique for NO2-detection: system quality and simulation,” RIVM-Rep. 222701001 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1991).

Brinkmann, U.

K. W. Rothe, U. Brinkmann, H. Walther, “Remote measurement of NO2 emission from a chemical factory by the differential absorption technique,” Appl. Phys. 4, 181–182 (1974).
[CrossRef]

Bristow, M.

Browell, E. V.

Butler, C. F.

Cann, M. W. P.

M. W. P. Cann, J. B. Shinn, R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984).
[CrossRef]

Carter, A. F.

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

Clough, S. A.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

de Backer, H.

H. de Backer, E. P. Visser, D. de Muer, D. P. J. Swart, “Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994).
[CrossRef]

de Jonge, C. N.

C. N. de Jonge, D. P. J. Swart, J. B. Bergwerff, “DIAL technique for NO2-detection: system quality and simulation,” RIVM-Rep. 222701001 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1991).

de Muer, D.

H. de Backer, E. P. Visser, D. de Muer, D. P. J. Swart, “Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994).
[CrossRef]

Devir, A. D.

Diebel, D.

Dombrowski, M.

Edner, H.

Engel, M.

Faris, G. W.

Fenn, R. W.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

Fletcher, L. D.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-based ultraviolet differential absorption lidar (DIAL) system and measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, Berlin, 1983), Chap. 3.

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

Godin, S. M.

Hall, W. M.

Hawley, J. G.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-based ultraviolet differential absorption lidar (DIAL) system and measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, Berlin, 1983), Chap. 3.

Isaksen, I. S. A.

D. Kley, I. S. A. Isaksen, S. A. Penkett, “TOR, tropospheric ozone research,” EUREKA subproject proposal (EURO-TRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

Ismail, S.

Kley, D.

D. Kley, I. S. A. Isaksen, S. A. Penkett, “TOR, tropospheric ozone research,” EUREKA subproject proposal (EURO-TRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

Korb, C. L.

Kunz, G.

G. Kunz, F. Swart, “Light source for dynamic testing of photo detectors,” TNO-Rep. FEL 1989–69 (TNO, Den Haag, The Netherlands, 1989).

Lauffer, A. H.

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

Ledford, A. E.

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

Likura, Y.

Luches, A.

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

Maeda, M.

Mayo, M. N.

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1976).

McDermid, I. S.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

Megie, G.

A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1989).
[CrossRef]

J. Pelon, G. Megie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

Milton, M. J. T.

R. Barbini, M. J. T. Milton, J. Pelon, C. Weitkamp, “TESLAS, Joint European Program for the Tropospheric Environmental Studies by Laser Sounding,” EUROTRAC subproject proposal (EUROTRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

Miyazoe, Y.

Nassisi, V.

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

Nicholls, R. W.

M. W. P. Cann, J. B. Shinn, R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984).
[CrossRef]

Oppenheim, U. P.

Papayannis, A.

Paur, R. J.

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone” (National Bureau of Standards, Washington, D.C. 20234, personal communication, 10August1992).

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone. I. The measurements,” in Atmospheric Ozone, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1984), pp. 606–610.

Pelon, J.

A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1989).
[CrossRef]

J. Pelon, G. Megie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

R. Barbini, M. J. T. Milton, J. Pelon, C. Weitkamp, “TESLAS, Joint European Program for the Tropospheric Environmental Studies by Laser Sounding,” EUROTRAC subproject proposal (EUROTRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

Penkett, S. A.

D. Kley, I. S. A. Isaksen, S. A. Penkett, “TOR, tropospheric ozone research,” EUREKA subproject proposal (EURO-TRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

Perrone, M. R.

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

Pettifer, R. E. W.

R. E. W. Pettifer, “Signal induced noise in lidar experiments,” J. Atmos. Terr. Phys. 37, 669–673 (1975).
[CrossRef]

Prasad, C.

Rothe, K. W.

K. W. Rothe, U. Brinkmann, H. Walther, “Remote measurement of NO2 emission from a chemical factory by the differential absorption technique,” Appl. Phys. 4, 181–182 (1974).
[CrossRef]

Sang Lee, H.

Sasano, Y.

Schwemmer, G. K.

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

Shimizu, H.

Shinn, J. B.

M. W. P. Cann, J. B. Shinn, R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984).
[CrossRef]

Shipley, S. T.

Siviter, J. H.

Sugimoto, N.

Sunesson, J. A.

H. Edner, G. W. Faris, J. A. Sunesson, S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989).
[CrossRef] [PubMed]

H. Edner, J. A. Sunesson, S. Svanberg, “NO plume mapping by laser-radar techniques,” Opt. Lett. 13, 704–706 (1988).
[CrossRef] [PubMed]

J. A. Sunesson, “RIVM tropospheric ozone lidar: feasibility and definition,” RIVM-Rep. 222201002 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).

J. A. Sunesson, A. Apituley, “RIVM Tropospheric Ozone Lidar: system description and first results,” RIVM-Rep. 222201006 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).

Svanberg, S.

Swart, D. P. J.

H. de Backer, E. P. Visser, D. de Muer, D. P. J. Swart, “Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994).
[CrossRef]

C. N. de Jonge, D. P. J. Swart, J. B. Bergwerff, “DIAL technique for NO2-detection: system quality and simulation,” RIVM-Rep. 222701001 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1991).

Swart, F.

G. Kunz, F. Swart, “Light source for dynamic testing of photo detectors,” TNO-Rep. FEL 1989–69 (TNO, Den Haag, The Netherlands, 1989).

Thomsen, O.

O. Thomsen, “Messung des Absorptionswirkungsquerschnitts von Schwefeldioxid im Wellenlangebereich von 265 bis 298 nm,” Ph.D. dissertation (GKSS Forschungszentrum, Geesthacht, Germany, 1990).

Tokunaga, M.

Trakhovsky, E.

Uchino, O.

Visser, E. P.

H. de Backer, E. P. Visser, D. de Muer, D. P. J. Swart, “Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994).
[CrossRef]

Wallace, G. F.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-based ultraviolet differential absorption lidar (DIAL) system and measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, Berlin, 1983), Chap. 3.

Walsh, D. T.

Walther, H.

K. W. Rothe, U. Brinkmann, H. Walther, “Remote measurement of NO2 emission from a chemical factory by the differential absorption technique,” Appl. Phys. 4, 181–182 (1974).
[CrossRef]

Weitkamp, C.

R. Barbini, M. J. T. Milton, J. Pelon, C. Weitkamp, “TESLAS, Joint European Program for the Tropospheric Environmental Studies by Laser Sounding,” EUROTRAC subproject proposal (EUROTRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

Zimmerman, R.

Appl. Opt. (9)

H. Edner, G. W. Faris, J. A. Sunesson, S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989).
[CrossRef] [PubMed]

A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1989).
[CrossRef]

D. Diebel, M. Bristow, R. Zimmerman, “Stokes shifte Raman laser lines in KrF-pumped hydrogen: reduction of beam divergence by addition of helium,” Appl. Opt. 30, 626–628 (1991).
[CrossRef] [PubMed]

E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, W. M. Hall, “NASA multipurpose airborne dial system and measurements of ozone and aerosol profiles,” Appl. Opt. 22, 522–534 (1983).
[CrossRef] [PubMed]

Y. Likura, N. Sugimoto, Y. Sasano, H. Shimizu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt. 26, 5299–5306 (1987).
[CrossRef] [PubMed]

H. Sang Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990).
[CrossRef]

I. S. McDermid, S. M. Godin, D. T. Walsh, “Lidar measurements of stratospheric ozone and intercomparisons and validation,” Appl. Opt. 29, 4914–4923 (1989).
[CrossRef]

E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

E. Trakhovsky, A. Ben-Shalom, U. P. Oppenheim, A. D. Devir, L. S. Balfour, M. Engel, “Contribution of oxygen to attenuation in the solar blind UV spectral region,” Appl. Opt. 28, 1588–1591 (1989).
[CrossRef] [PubMed]

Appl. Phys. (1)

K. W. Rothe, U. Brinkmann, H. Walther, “Remote measurement of NO2 emission from a chemical factory by the differential absorption technique,” Appl. Phys. 4, 181–182 (1974).
[CrossRef]

Appl. Phys. B (1)

A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
[CrossRef]

Can. J. Phys. (1)

M. W. P. Cann, J. B. Shinn, R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984).
[CrossRef]

J. Atmos. Terr. Phys. (1)

R. E. W. Pettifer, “Signal induced noise in lidar experiments,” J. Atmos. Terr. Phys. 37, 669–673 (1975).
[CrossRef]

J. Geophys. Res. (2)

J. Pelon, G. Megie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

H. de Backer, E. P. Visser, D. de Muer, D. P. J. Swart, “Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994).
[CrossRef]

J. Res. Natl. Bur. Stand. Sect. A (1)

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
[CrossRef]

Opt. Lett. (2)

Surv. Geophys. (1)

I. S. McDermid, “Ground-based lidar and atmospheric studies,” Surv. Geophys. 9, 107–122 (1987).
[CrossRef]

Other (14)

J. A. Sunesson, “RIVM tropospheric ozone lidar: feasibility and definition,” RIVM-Rep. 222201002 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).

J. A. Sunesson, A. Apituley, “RIVM Tropospheric Ozone Lidar: system description and first results,” RIVM-Rep. 222201006 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-based ultraviolet differential absorption lidar (DIAL) system and measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, Berlin, 1983), Chap. 3.

D. Kley, I. S. A. Isaksen, S. A. Penkett, “TOR, tropospheric ozone research,” EUREKA subproject proposal (EURO-TRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

R. Barbini, M. J. T. Milton, J. Pelon, C. Weitkamp, “TESLAS, Joint European Program for the Tropospheric Environmental Studies by Laser Sounding,” EUROTRAC subproject proposal (EUROTRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).

G. Kunz, F. Swart, “Light source for dynamic testing of photo detectors,” TNO-Rep. FEL 1989–69 (TNO, Den Haag, The Netherlands, 1989).

C. N. de Jonge, D. P. J. Swart, J. B. Bergwerff, “DIAL technique for NO2-detection: system quality and simulation,” RIVM-Rep. 222701001 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1991).

O. Thomsen, “Messung des Absorptionswirkungsquerschnitts von Schwefeldioxid im Wellenlangebereich von 265 bis 298 nm,” Ph.D. dissertation (GKSS Forschungszentrum, Geesthacht, Germany, 1990).

E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1976).

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone. I. The measurements,” in Atmospheric Ozone, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1984), pp. 606–610.

A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone” (National Bureau of Standards, Washington, D.C. 20234, personal communication, 10August1992).

Laboratory of Air Research, “Luchtkwaliteit, jaarverslag 1989 (air quality, annual report 1989),” RIVM-Rep. 222101006 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic overview of the tropospheric ozone DIAL system. D’s, dichroic mirrors; M’s, UV mirrors.

Fig. 2
Fig. 2

Signal-induced-noise effect on the 266-nm signal. The data were taken at 11:09 a.m., 5 September 1990. Solid curves, uncorrected and corrected signals; dashed line, fitted baseline. See also Fig. 7 below.

Fig. 3
Fig. 3

Typical range-corrected LIDAR return signals for 266,289, and 299 nn. The data were taken at 12:10 p.m.,22 Feb. 1991.

Fig. 4
Fig. 4

Range-corrected LIDAR return signals at 289 and 299 nm, normalized at 630 m and shown on a logarithmic scale. The monotonic decay of the signals shows that full overlap between the two beams and the telescope is reached above 630 m. The data were taken at 11:17 a.m., 3 August 1990. See also Fig. 6, below.

Fig. 5
Fig. 5

(a) DIAL curves for the wavelength pairs 266 and 289 nm and 289 and 299 nm, (b) ozone profiles. ○, ozone derived from the wavelength pair 266/289 nm; ×, wavelength pair 289/299 nm; horizontal bars, ±1σ uncertainty interval; vertical bars, range resolution (210 and 330 m, respectively). The data were taken at 12:10 P.M., 22 February 1991.

Fig. 6
Fig. 6

Measurement with a pronounced boundary between the mixed layer and the free troposphere. The boundary is indicated by an arrow. (a) Range-corrected LIDAR signals at 289 and 299 nm and (b) ozone profile.

Fig. 7
Fig. 7

Example of the effect of signal-induced noise on an ozone measurement. (a) Corrected and uncorrected LIDAR signals at 266 nm together with the signal at 289 nm. See also Fig. 2. (b) Slope of the log of the range-corrected lidar signal at 266 nm before and after SIB correction. The dashed lines indicate the expected slope for a moderate ozone concentration (40 ppbv) at the displayed wavelengths. Also shown for comparison is the slope of the 289-nm signal together with the expected slope. (c) Ozone profiles uncorrected and corrected for SIB. Data taken at 11:09 a.m., 5 September 1990.

Fig. 8
Fig. 8

Application of LIDAR measurements of ozone. (a) 27 June 1990, (b) 3 August 1990. M.E.T., define; PBL, planetary boundary layer.

Tables (5)

Tables Icon

Table 1 Wavelength Sets for FrF Excimer and Nd:YAG Lasers

Tables Icon

Table 2 System Parametersa

Tables Icon

Table 3 Summary of Statistical Errors Relative to an Ozone Concentration of 80 μg/m3

Tables Icon

Table 4 Systematic Errors Relative to an Ozone Concentration of 80 μg/m3a

Tables Icon

Table 5 Errors for an Unoptimized and an Optimized System

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ( R , Δ R , λ ) = C Δ R R 2 β ( R , λ ) exp { - 2 0 R [ σ ( λ ) n ( r ) + α abs ( r , λ ) + α ext ( r , λ ) ] d r } ,
ln [ P on ( R ) P off ( R ) ] = ln [ β on ( R ) β off ( R ) ] - 2 0 R [ Δ σ n ( r ) + Δ α abs ( r ) + Δ α ext ( r ) ] d r ,
= - 1 2 Δ σ R { ln [ P on ( R ) P off ( R ) ] }
+ 1 2 Δ σ R { ln [ β on ( R ) β off ( R ) ] }
- 1 Δ σ Δ α abs ( R )
- 1 Δ σ Δ α ext ( R ) .

Metrics