Abstract

Germanium avalanche photodiodes (APD’s) working biased above the breakdown voltage detect single optical photons in the near-infrared wavelength range. We give guidelines for the selection of devices suitable for photon-counting applications among the commercial samples, and we discuss in detail how the devices should be operated to achieve the best performance, both in terms of noise-equivalent power (NEP) and the timing-equivalent bandwidth. We introduce the driving electronics and we show that, in the measurements of fast optical signals, the adoption of single-photon techniques is very favorable, notwithstanding that presently available photodiodes are not designed for this purpose. On the contrary, in the detection of cw signals, the lower NEP values achieved in photon counting may not be sufficient to justify the replacement of conventional analog p-i-n germanium detectors, which offer comparable performance with a definitely larger sensitive area. Finally, we show that, by properly choosing the operating conditions, some selected APD’s achieve an 85-ps time resolution in the detection of optical photons at a 1.3-μm wavelength, which corresponds to a timing-equivalent bandwidth of 1.8 GHz. To the best of our knowledge, this time resolution is the lowest reported to date for single-photon detectors in the near infrared.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Hyperpure germanium detection system EO-817L, 1991 data sheet (North Coast Scientific Corporation, P.O. Box 6812, Santa Rosa, Calif., 95406).
  2. D. P. Mathu, R. J. McIntyre, P. P. Webb, “A new germanium photodiode with extended long-wavelength response,” Appl. Opt. 9, 1842–1847 (1970).
    [CrossRef]
  3. D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983), Chap. 2, p. 36.
  4. R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [CrossRef] [PubMed]
  5. G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” J. Lightwave Technol. 8, 1278–1283 (1990).
    [CrossRef]
  6. N. S. Nightingale, “A new silicon avalanche photodiode detector for astronomy,” Exp. Astron. 1, 407–422 (1991).
    [CrossRef]
  7. J. R. Palmer, G. R. Morrison, “The use of avalanche photodiodes for the detection of soft x rays,” Rev. Sci. Instrum. 63, 828–831 (1992).
    [CrossRef]
  8. T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
    [CrossRef] [PubMed]
  9. W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
    [CrossRef]
  10. B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
    [CrossRef]
  11. B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985).
    [CrossRef]
  12. A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
    [CrossRef] [PubMed]
  13. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
    [CrossRef]
  14. R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
    [CrossRef]
  15. S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12, 685–687 (1991).
    [CrossRef]
  16. T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983).
    [CrossRef]
  17. R. H. Haitz, “Variation of junction breakdown voltage by charge trapping,” Phys. Rev. 138, A260–A267 (1965).
    [CrossRef]
  18. C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, “High-resolution and high-sensitivity optical time-domain reflectometer,” Opt. Lett. 13, 233–235 (1988).
    [CrossRef] [PubMed]
  19. O. Groezinger, W. Haecker, “Influence of tunneling processes on avalanche breakdown in Ge and Si,” J. Appl. Phys. 44, 1307–1310 (1973).
    [CrossRef]
  20. A. D. MacGregor, B. Dion, R. J. McIntyre, “High-sensitivity, high-data-rate receivers for ISL using low-noise silicon APD’s,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 176–186 (1989).
  21. R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964).
    [CrossRef]
  22. P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performance of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, 1975), pp. 453–456.
  23. S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
    [CrossRef]
  24. S. Cova, A. Longoni, G. Ripamonti, “Active quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
    [CrossRef]
  25. S. Cova, “Active quenching circuit for avalanche photodiodes,” U.S. Patent4,963,727 (Italian patent 22367A/88) (16October1990).
  26. R. G. W. Brown, K. D. Ridley, J. C. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: active quenching,” Appl. Opt. 26, 2383–2389 (1987).
    [CrossRef] [PubMed]
  27. T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A326, 570–573 (1993).
  28. G. Vincent, A. Chantre, D. Boise, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
    [CrossRef]
  29. R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973).
    [CrossRef]
  30. W. C. Dash, R. Newman, “Intrinsic optical absorption in single crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151–1155 (1955).
    [CrossRef]
  31. W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
    [CrossRef]
  32. T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett. 37, 387–389 (1980).
    [CrossRef]
  33. B. T. Dai, C. Y. Chang, “Temperature dependence of ionization rates in Ge,” J. Appl. Phys. 42, 5198–5201 (1971).
    [CrossRef]
  34. A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
    [CrossRef] [PubMed]
  35. G. Ripamonti, M. Ghioni, S. Vanoli, “Photon timing OTDR: a multiphoton backscattered pulse approach,” Electron. Lett. 26, 1569–1570 (1990).
    [CrossRef]

1993 (4)

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A326, 570–573 (1993).

A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
[CrossRef] [PubMed]

1992 (1)

J. R. Palmer, G. R. Morrison, “The use of avalanche photodiodes for the detection of soft x rays,” Rev. Sci. Instrum. 63, 828–831 (1992).
[CrossRef]

1991 (2)

N. S. Nightingale, “A new silicon avalanche photodiode detector for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12, 685–687 (1991).
[CrossRef]

1990 (2)

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

G. Ripamonti, M. Ghioni, S. Vanoli, “Photon timing OTDR: a multiphoton backscattered pulse approach,” Electron. Lett. 26, 1569–1570 (1990).
[CrossRef]

1989 (1)

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

1988 (1)

1987 (1)

1986 (1)

1985 (1)

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985).
[CrossRef]

1984 (1)

B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

1983 (1)

T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983).
[CrossRef]

1982 (1)

S. Cova, A. Longoni, G. Ripamonti, “Active quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

1981 (1)

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

1980 (1)

T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett. 37, 387–389 (1980).
[CrossRef]

1979 (1)

G. Vincent, A. Chantre, D. Boise, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

1973 (2)

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973).
[CrossRef]

O. Groezinger, W. Haecker, “Influence of tunneling processes on avalanche breakdown in Ge and Si,” J. Appl. Phys. 44, 1307–1310 (1973).
[CrossRef]

1972 (1)

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

1971 (2)

B. T. Dai, C. Y. Chang, “Temperature dependence of ionization rates in Ge,” J. Appl. Phys. 42, 5198–5201 (1971).
[CrossRef]

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

1970 (1)

1965 (2)

R. H. Haitz, “Variation of junction breakdown voltage by charge trapping,” Phys. Rev. 138, A260–A267 (1965).
[CrossRef]

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

1964 (1)

R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

1955 (1)

W. C. Dash, R. Newman, “Intrinsic optical absorption in single crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151–1155 (1955).
[CrossRef]

Andreoni, A.

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Antognetti, P.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performance of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, 1975), pp. 453–456.

Bethea, C. G.

C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, “High-resolution and high-sensitivity optical time-domain reflectometer,” Opt. Lett. 13, 233–235 (1988).
[CrossRef] [PubMed]

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

Boise, D.

G. Vincent, A. Chantre, D. Boise, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

Brown, R. G. W.

Campbell, J. C.

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985).
[CrossRef]

Campos, R. A.

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

Chang, C. Y.

B. T. Dai, C. Y. Chang, “Temperature dependence of ionization rates in Ge,” J. Appl. Phys. 42, 5198–5201 (1971).
[CrossRef]

Chantre, A.

G. Vincent, A. Chantre, D. Boise, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

Cohen, L. G.

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985).
[CrossRef]

Cova, S.

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12, 685–687 (1991).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, “High-resolution and high-sensitivity optical time-domain reflectometer,” Opt. Lett. 13, 233–235 (1988).
[CrossRef] [PubMed]

S. Cova, A. Longoni, G. Ripamonti, “Active quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performance of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, 1975), pp. 453–456.

S. Cova, “Active quenching circuit for avalanche photodiodes,” U.S. Patent4,963,727 (Italian patent 22367A/88) (16October1990).

Dai, B. T.

B. T. Dai, C. Y. Chang, “Temperature dependence of ionization rates in Ge,” J. Appl. Phys. 42, 5198–5201 (1971).
[CrossRef]

Dash, W. C.

W. C. Dash, R. Newman, “Intrinsic optical absorption in single crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151–1155 (1955).
[CrossRef]

Dion, B.

A. D. MacGregor, B. Dion, R. J. McIntyre, “High-sensitivity, high-data-rate receivers for ISL using low-noise silicon APD’s,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 176–186 (1989).

Fenker, H. C.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A326, 570–573 (1993).

Francese, P. A.

Ghioni, M.

G. Ripamonti, M. Ghioni, S. Vanoli, “Photon timing OTDR: a multiphoton backscattered pulse approach,” Electron. Lett. 26, 1569–1570 (1990).
[CrossRef]

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Groezinger, O.

O. Groezinger, W. Haecker, “Influence of tunneling processes on avalanche breakdown in Ge and Si,” J. Appl. Phys. 44, 1307–1310 (1973).
[CrossRef]

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

Haecker, W.

O. Groezinger, W. Haecker, “Influence of tunneling processes on avalanche breakdown in Ge and Si,” J. Appl. Phys. 44, 1307–1310 (1973).
[CrossRef]

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

Haitz, R. H.

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

R. H. Haitz, “Variation of junction breakdown voltage by charge trapping,” Phys. Rev. 138, A260–A267 (1965).
[CrossRef]

R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

Jakeman, E.

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

Kagawa, S.

T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett. 37, 387–389 (1980).
[CrossRef]

Kaneda, T.

T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983).
[CrossRef]

T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett. 37, 387–389 (1980).
[CrossRef]

Lacaita, A.

A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12, 685–687 (1991).
[CrossRef]

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Larchuk, T. S.

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

Levine, B. F.

C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, “High-resolution and high-sensitivity optical time-domain reflectometer,” Opt. Lett. 13, 233–235 (1988).
[CrossRef] [PubMed]

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, G. Ripamonti, “Active quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performance of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, 1975), pp. 453–456.

Louis, T. A.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

MacGregor, A. D.

A. D. MacGregor, B. Dion, R. J. McIntyre, “High-sensitivity, high-data-rate receivers for ISL using low-noise silicon APD’s,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 176–186 (1989).

Mathu, D. P.

McIntyre, R. J.

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973).
[CrossRef]

D. P. Mathu, R. J. McIntyre, P. P. Webb, “A new germanium photodiode with extended long-wavelength response,” Appl. Opt. 9, 1842–1847 (1970).
[CrossRef]

A. D. MacGregor, B. Dion, R. J. McIntyre, “High-sensitivity, high-data-rate receivers for ISL using low-noise silicon APD’s,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 176–186 (1989).

Mikawa, T.

T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983).
[CrossRef]

T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett. 37, 387–389 (1980).
[CrossRef]

Morris, G. D.

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985).
[CrossRef]

Morrison, G. R.

J. R. Palmer, G. R. Morrison, “The use of avalanche photodiodes for the detection of soft x rays,” Rev. Sci. Instrum. 63, 828–831 (1992).
[CrossRef]

Motegi, M.

T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983).
[CrossRef]

Newman, R.

W. C. Dash, R. Newman, “Intrinsic optical absorption in single crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151–1155 (1955).
[CrossRef]

Nightingale, N. S.

N. S. Nightingale, “A new silicon avalanche photodiode detector for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

Nishimoto, H.

T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983).
[CrossRef]

O’Connor, D. V.

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983), Chap. 2, p. 36.

Okushima, H.

T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983).
[CrossRef]

Oldham, W. G.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

Oliver, J.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A326, 570–573 (1993).

Palmer, J. R.

J. R. Palmer, G. R. Morrison, “The use of avalanche photodiodes for the detection of soft x rays,” Rev. Sci. Instrum. 63, 828–831 (1992).
[CrossRef]

Phillips, D.

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983), Chap. 2, p. 36.

Pilkuhn, M. H.

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

Rarity, J. C.

Rarity, J. G.

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
[CrossRef] [PubMed]

Regan, T. O.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A326, 570–573 (1993).

Ridley, K. D.

Ripamonti, G.

A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12, 685–687 (1991).
[CrossRef]

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

G. Ripamonti, M. Ghioni, S. Vanoli, “Photon timing OTDR: a multiphoton backscattered pulse approach,” Electron. Lett. 26, 1569–1570 (1990).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, “High-resolution and high-sensitivity optical time-domain reflectometer,” Opt. Lett. 13, 233–235 (1988).
[CrossRef] [PubMed]

S. Cova, A. Longoni, G. Ripamonti, “Active quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

Saleh, B. E. A.

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

Samuelson, R. R.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

Tapster, P. R.

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

Teich, M. C.

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

Thomas, J.

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A326, 570–573 (1993).

Toyama, Y.

T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett. 37, 387–389 (1980).
[CrossRef]

Vanoli, S.

G. Ripamonti, M. Ghioni, S. Vanoli, “Photon timing OTDR: a multiphoton backscattered pulse approach,” Electron. Lett. 26, 1569–1570 (1990).
[CrossRef]

Vincent, G.

G. Vincent, A. Chantre, D. Boise, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

Webb, P. P.

Zappa, F.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett. 37, 387–389 (1980).
[CrossRef]

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

Electron. Lett. (3)

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985).
[CrossRef]

T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983).
[CrossRef]

G. Ripamonti, M. Ghioni, S. Vanoli, “Photon timing OTDR: a multiphoton backscattered pulse approach,” Electron. Lett. 26, 1569–1570 (1990).
[CrossRef]

Exp. Astron. (1)

N. S. Nightingale, “A new silicon avalanche photodiode detector for astronomy,” Exp. Astron. 1, 407–422 (1991).
[CrossRef]

IEEE Electron. Dev. Lett. (1)

S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12, 685–687 (1991).
[CrossRef]

IEEE Trans. Electron Devices (2)

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972).
[CrossRef]

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

S. Cova, A. Longoni, G. Ripamonti, “Active quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

J. Appl. Phys. (5)

O. Groezinger, W. Haecker, “Influence of tunneling processes on avalanche breakdown in Ge and Si,” J. Appl. Phys. 44, 1307–1310 (1973).
[CrossRef]

R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

G. Vincent, A. Chantre, D. Boise, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979).
[CrossRef]

B. T. Dai, C. Y. Chang, “Temperature dependence of ionization rates in Ge,” J. Appl. Phys. 42, 5198–5201 (1971).
[CrossRef]

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

J. Lightwave Technol. (1)

G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” J. Lightwave Technol. 8, 1278–1283 (1990).
[CrossRef]

Nucl. Instrum. Methods (1)

T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A326, 570–573 (1993).

Opt. Lett. (3)

Phys. Rev. (2)

R. H. Haitz, “Variation of junction breakdown voltage by charge trapping,” Phys. Rev. 138, A260–A267 (1965).
[CrossRef]

W. C. Dash, R. Newman, “Intrinsic optical absorption in single crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151–1155 (1955).
[CrossRef]

Phys. Rev. Lett. (1)

T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

J. R. Palmer, G. R. Morrison, “The use of avalanche photodiodes for the detection of soft x rays,” Rev. Sci. Instrum. 63, 828–831 (1992).
[CrossRef]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Other (5)

S. Cova, “Active quenching circuit for avalanche photodiodes,” U.S. Patent4,963,727 (Italian patent 22367A/88) (16October1990).

P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performance of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, 1975), pp. 453–456.

A. D. MacGregor, B. Dion, R. J. McIntyre, “High-sensitivity, high-data-rate receivers for ISL using low-noise silicon APD’s,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 176–186 (1989).

Hyperpure germanium detection system EO-817L, 1991 data sheet (North Coast Scientific Corporation, P.O. Box 6812, Santa Rosa, Calif., 95406).

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983), Chap. 2, p. 36.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

(a) Typical transimpedance amplifier employed with a p-i-n photodiode in the detection of weak optical signals. (b) Equivalent circuit with the noise sources. G, gain; RL, feedback resistor; −V, negative voltage source; en2, equivalent voltage noise generator; in2, equivalent current noise generator; C, capacitance.

Fig. 2
Fig. 2

Frequency dependence of the minimum NEP estimated for a germanium p-i-n receiver with the amplifier shown in Fig. 1. The input capacitance value is 5 pF, and a value of 5 mA/V is assumed for the transconductance of the cooled JFET. The 1/f noise components are neglected. The dashed lines are the contributions from the resistor (RL) and the capacitor (C). The solid lines are the total NEP (the sum of the two contributions).

Fig. 3
Fig. 3

Experimental setup adopted in the characterization of the avalanche photodiodes. The device is cooled in a cryostat.

Fig. 4
Fig. 4

Avalanche current pulse from a F-APD biased 75 mV above Vb. The arrow on the left (right) indicates the leading- (trailing-) edge spike.

Fig. 5
Fig. 5

Avalanche current pulse from a J-APD biased 300 mV above Vb. The dashed curve shows the ideal rectangular waveform expected for the avalanche pulse.

Fig. 6
Fig. 6

Two subsequent avalanche pulses from a J-APD biased 300 mV above Vb. The peak current of the second pulse is lower because the carriers trapped during the first pulse have not all been released and Vb has not yet recovered to the steady-state value.

Fig. 7
Fig. 7

Carrier-trapping effects: dependence on bias of the peak current and the steady-state avalanche current (see Fig. 5), for the J-APD.

Fig. 8
Fig. 8

Avalanche pulse from a F-APD biased at 250 mV of excess bias. The current transient is due to a thermal shift of the Vb value.

Fig. 9
Fig. 9

Thermal effects: dependence on bias of the peak avalanche current and of the steady-state current of a F-APD (see Fig. 8). From the experimental curves, a thermal resistance of 95 K/W is obtained.

Fig. 10
Fig. 10

Dark-counting rate of a F-APD in self-quenching operation (solid curve). At any temperature the APD was reverse biased with an avalanche current of 40 μA, which statistically self-quenched after an average time of 1 μs.21 The dashed curve shows the dark-counting rate dependence previously reported in Ref. 19.

Fig. 11
Fig. 11

Dark-counting rate of a F-APD measured versus the hold-off time enforced after each avalanche. The device was biased 0.5 V above Vb and quenched when the bias was lowered 0.2 V below Vb.

Fig. 12
Fig. 12

Dark-counting rate of a F-APD biased 0.5 V above Vb after 10 μs from an avalanche pulse as a function of the total charge flown through the device. On the right axis is reported the corresponding percentage of population traps. The arrow indicates the 70-kHz limit imposed on the dark-counting rate by tunneling.

Fig. 13
Fig. 13

Simplified block diagram of the most recent AQC generation; it is described in the text. Note the symmetry of the circuit.

Fig. 14
Fig. 14

Dark-counting rate of a F-APD, in free-running operation with in AQC, versus the excess-bias voltage. The hold-off time was 3 μs and the bias level during the hold-off was changed from 99% Vb to 50% Vb.

Fig. 15
Fig. 15

Dependence of the counting rate of a F-APD on the proportional increase of the signal intensity. The detector was in free-running operation with an AQC 0.2 V above Vb. The bias level during the hold-off time (3 μs) was changed from 99% Vb to 50% Vb. The data are plotted after the dead-time correction was performed.

Fig. 16
Fig. 16

NEP of a F-APD estimated on the basis of the dark-counting rate shown in Fig. 14. The estimated photon-detection efficiency at 1.3 μm is quoted at the bias points. For comparison, the dashed line shows the NEP of a 77-K cooled germanium p-i-n diode, with a sensitive-area diameter of less than 4.5 mm, followed by an analog preamplifier with a 1-GΩ feedback resistor. The ultimate NEP achievable with a F-APD in photon counting is limited by tunneling. The filled squares represent total NEP; the filled triangles represent the NEP from tunneling alone.

Fig. 17
Fig. 17

(a) Experimental setup adopted in the measurements of the timing performance. TPHC, time-to-pulse-height converter; MCA, multichannel analyzer. (b) Temporal dependence of the waveforms provided by the external pulse generator and the avalanche pulse from the detector.

Fig. 18
Fig. 18

Dependence of the time resolution of the tested Judson and Fujitsu APD samples on the excess-bias voltage.

Fig. 19
Fig. 19

Waveform of a 60 ps FWHM optical pulse from a 1.3-μm laser diode. The waveform was measured with a F-APD that was cooled at 77 K and biased 3 V above the breakdown voltage Vb.

Fig. 20
Fig. 20

Trade-off between the time resolution and NEP achievable with F-APD’s. The avalanche was quenched 30 ns after it was triggered.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

i n 2 = 4 k T R L + 2 q I D + 2 q I G ,
e n 2 = 2 3 4 k T g m ,
i n 2 4 k T R L + 2 q I D + 2 q I G + 2 3 4 k T g m ( ω C ) 2 ,
I s t = V 0 - V b R s ,
V b = ɛ E b 2 q N D ,
Δ V b V b = N f T N D ,
Δ I = V b R s N f T N D .
Δ I = d V b d T Δ T R s = γ P d R s R th ,
P m = h ν η ( n D T ) 1 / 2 = NEP ( 2 T ) 1 / 2 ,
n s = n c 1 - n c T dead .
f ( Q ) = 1 - exp ( - I T ON q σ c ) = 1 - exp ( - Q q σ c ) ,
Q eff = Q exp ( - 1 n c τ ) 1 - exp ( - 1 n c τ ) .
S N = n S N w [ ( n D + n S ) N w ] 1 / 2 ,
P m = h ν η ( n D N w ) = NEP ( 2 N w ) 1 / 2 ,

Metrics