Abstract

We demonstrate photon counting in germanium avalanche photodiodes biased beyond breakdown and quenched with a simple series resistance circuit. The devices show moderate (> 7%) quantum efficiency with limited afterpulsing and dark counts and subnanosecond jitter.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–277 (1974).
  2. S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
    [CrossRef]
  3. R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [CrossRef] [PubMed]
  4. R. G. W. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active Quenching,” Appl. Opt. 26, 2383–2388 (1987).
    [CrossRef] [PubMed]
  5. W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
    [CrossRef]
  6. W. Fichter, W. Haecker, “Time resolution of Ge avalanche photodiodes operating as photon counting in delayed coincidence,” Rev. Sci. Instrum. 47, 374–377 (1976).
    [CrossRef]
  7. B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 microns using a gated APD,” Appl. Phys. Lett. 44, 553–555 (1984).
    [CrossRef]
  8. B. F. Levine, C. G. Bethea, “10-MHz single photon counting at 1.3 microns,” Appl. Phys. Lett. 44, 581–582 (1984).
    [CrossRef]
  9. A. Lacaita, S. Cova, G. Ripamonti, P. Lovati, “First demonstration of sub-nanosecond photon timing with a germanium photodiode,” Microelectron. Eng. 19, 61–66 (1992).
    [CrossRef]
  10. A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
    [CrossRef] [PubMed]
  11. P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10-km-long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
    [CrossRef]
  12. A. K. Ekert, J. G. Rarity, P. R. Tapster, G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
    [CrossRef] [PubMed]
  13. R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964).
    [CrossRef]
  14. R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
    [CrossRef]
  15. R. J. McIntyre, “Theory of microplasma instability in silicon,” J. Appl. Phys. 32, 983–995 (1961).
    [CrossRef]
  16. W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Elecron Devices 19, 1056–1060 (1972).
    [CrossRef]
  17. R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices 20, 637–641 (1973).
    [CrossRef]
  18. R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985).
    [CrossRef]
  19. A. Lacaita, M. Mastrapasque, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron Lett. 26, 2053–2054 (1990).
    [CrossRef]

1993

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10-km-long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

1992

A. K. Ekert, J. G. Rarity, P. R. Tapster, G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, G. Ripamonti, P. Lovati, “First demonstration of sub-nanosecond photon timing with a germanium photodiode,” Microelectron. Eng. 19, 61–66 (1992).
[CrossRef]

1990

A. Lacaita, M. Mastrapasque, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron Lett. 26, 2053–2054 (1990).
[CrossRef]

1987

1986

1985

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

1984

B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 microns using a gated APD,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, “10-MHz single photon counting at 1.3 microns,” Appl. Phys. Lett. 44, 581–582 (1984).
[CrossRef]

1981

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

1976

W. Fichter, W. Haecker, “Time resolution of Ge avalanche photodiodes operating as photon counting in delayed coincidence,” Rev. Sci. Instrum. 47, 374–377 (1976).
[CrossRef]

1974

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–277 (1974).

1973

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices 20, 637–641 (1973).
[CrossRef]

1972

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Elecron Devices 19, 1056–1060 (1972).
[CrossRef]

1971

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

1965

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

1964

R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

1961

R. J. McIntyre, “Theory of microplasma instability in silicon,” J. Appl. Phys. 32, 983–995 (1961).
[CrossRef]

Andreoni, A.

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Antognetti, P.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Elecron Devices 19, 1056–1060 (1972).
[CrossRef]

Bethea, C. G.

B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 microns using a gated APD,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, “10-MHz single photon counting at 1.3 microns,” Appl. Phys. Lett. 44, 581–582 (1984).
[CrossRef]

Brown, R. G. W.

Conradi, J.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–277 (1974).

Cova, S.

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, G. Ripamonti, P. Lovati, “First demonstration of sub-nanosecond photon timing with a germanium photodiode,” Microelectron. Eng. 19, 61–66 (1992).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Ekert, A. K.

A. K. Ekert, J. G. Rarity, P. R. Tapster, G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[CrossRef] [PubMed]

Fichter, W.

W. Fichter, W. Haecker, “Time resolution of Ge avalanche photodiodes operating as photon counting in delayed coincidence,” Rev. Sci. Instrum. 47, 374–377 (1976).
[CrossRef]

Francese, P. A.

Groezinger, O.

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

Haecker, W.

W. Fichter, W. Haecker, “Time resolution of Ge avalanche photodiodes operating as photon counting in delayed coincidence,” Rev. Sci. Instrum. 47, 374–377 (1976).
[CrossRef]

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

Haitz, R. H.

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

Jones, R.

Lacaita, A.

A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, G. Ripamonti, P. Lovati, “First demonstration of sub-nanosecond photon timing with a germanium photodiode,” Microelectron. Eng. 19, 61–66 (1992).
[CrossRef]

A. Lacaita, M. Mastrapasque, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron Lett. 26, 2053–2054 (1990).
[CrossRef]

Levine, B. F.

B. F. Levine, C. G. Bethea, “10-MHz single photon counting at 1.3 microns,” Appl. Phys. Lett. 44, 581–582 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 microns using a gated APD,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Lovati, P.

A. Lacaita, S. Cova, G. Ripamonti, P. Lovati, “First demonstration of sub-nanosecond photon timing with a germanium photodiode,” Microelectron. Eng. 19, 61–66 (1992).
[CrossRef]

Mastrapasque, M.

A. Lacaita, M. Mastrapasque, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron Lett. 26, 2053–2054 (1990).
[CrossRef]

McIntyre, R. J.

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–277 (1974).

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices 20, 637–641 (1973).
[CrossRef]

R. J. McIntyre, “Theory of microplasma instability in silicon,” J. Appl. Phys. 32, 983–995 (1961).
[CrossRef]

Oldham, W. G.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Elecron Devices 19, 1056–1060 (1972).
[CrossRef]

Palma, G. M.

A. K. Ekert, J. G. Rarity, P. R. Tapster, G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[CrossRef] [PubMed]

Pilkuhn, M. H.

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

Rarity, J. G.

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10-km-long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

A. K. Ekert, J. G. Rarity, P. R. Tapster, G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[CrossRef] [PubMed]

R. G. W. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active Quenching,” Appl. Opt. 26, 2383–2388 (1987).
[CrossRef] [PubMed]

R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
[CrossRef] [PubMed]

Ridley, K. D.

Ripamonti, G.

A. Lacaita, S. Cova, G. Ripamonti, P. Lovati, “First demonstration of sub-nanosecond photon timing with a germanium photodiode,” Microelectron. Eng. 19, 61–66 (1992).
[CrossRef]

Samuelson, R. R.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Elecron Devices 19, 1056–1060 (1972).
[CrossRef]

Tapster, P. R.

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10-km-long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

A. K. Ekert, J. G. Rarity, P. R. Tapster, G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[CrossRef] [PubMed]

Townsend, P. D.

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10-km-long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

Webb, P. P.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–277 (1974).

Zappa, F.

Appl. Opt.

Appl. Phys. Lett.

W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971).
[CrossRef]

B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 microns using a gated APD,” Appl. Phys. Lett. 44, 553–555 (1984).
[CrossRef]

B. F. Levine, C. G. Bethea, “10-MHz single photon counting at 1.3 microns,” Appl. Phys. Lett. 44, 581–582 (1984).
[CrossRef]

Electron Lett.

A. Lacaita, M. Mastrapasque, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron Lett. 26, 2053–2054 (1990).
[CrossRef]

Electron. Lett.

P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10-km-long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993).
[CrossRef]

IEEE Trans. Elecron Devices

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Elecron Devices 19, 1056–1060 (1972).
[CrossRef]

IEEE Trans. Electron Devices

R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices 20, 637–641 (1973).
[CrossRef]

J. Appl. Phys.

R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964).
[CrossRef]

R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965).
[CrossRef]

R. J. McIntyre, “Theory of microplasma instability in silicon,” J. Appl. Phys. 32, 983–995 (1961).
[CrossRef]

Measurement

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

Microelectron. Eng.

A. Lacaita, S. Cova, G. Ripamonti, P. Lovati, “First demonstration of sub-nanosecond photon timing with a germanium photodiode,” Microelectron. Eng. 19, 61–66 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. K. Ekert, J. G. Rarity, P. R. Tapster, G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[CrossRef] [PubMed]

RCA Rev.

P. P. Webb, R. J. McIntyre, J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–277 (1974).

Rev. Sci. Instrum.

S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

W. Fichter, W. Haecker, “Time resolution of Ge avalanche photodiodes operating as photon counting in delayed coincidence,” Rev. Sci. Instrum. 47, 374–377 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of operation of a passively quenched APD in the photon-counting mode. R q , quench resistor; V rb , reverse bias voltage, V b , breakdown voltage; R d , internal resistance of the device; C d , device capacitance; C g , stray capacitance to ground.

Fig. 2
Fig. 2

Block diagram of apparatus for measuring digital quantum efficiency. ND, neutral density.

Fig. 3
Fig. 3

Dark counts versus excess bias for detector 1 (threshold 25.32 V). Circles, dead time 250 ns; squares, dead time 1000 ns.

Fig. 4
Fig. 4

Autocorrelation function used for measuring afterpulsing. The detector operated 0.20 V above breakdown, with light count 55 kHz, dark count 8.5 kHz, sample time 100 ns, and electronic dead time 250 ns. The afterpulsing fraction was found to be 0.134.

Fig. 5
Fig. 5

Variation of afterpulsing with excess bias on detector 1. The results shown are for dead times of 250 and 1000 ns.

Fig. 6
Fig. 6

Maximum pulse height for pulses following an initial pulse. The pulses shown are after the first 10× amplification stage.

Fig. 7
Fig. 7

Variation of quantum efficiency with voltage above breakdown at dead time 250 ns.

Fig. 8
Fig. 8

Typical jitter plot, with detector 1 operating at 0.33 V above breakdown and detector 2 at 0.30 V above breakdown. The solid-curve indicates the Gaussian curve that was used to fit the points and from which the FWHM was calculated.

Fig. 9
Fig. 9

Variation of jitter with excess bias voltage.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N cor = N obs 1 - τ N obs ,
N cor = N sig + p N sig + p 2 N sig + ,
N cor = N sig ( 1 + x ) , x = i = 1 p i .
G ( 2 ) ( k τ ) = i = 1 M n ( i τ ) n ( i τ + k τ ) M n - 2 ,
G ( 2 ) ( k τ ) = 1 + p ( 0 k τ ) n ¯ , p ( 0 k τ ) = [ G ( 2 ) ( k τ ) - 1 ) n ¯ ,
x = k = 1 128 p ( 0 ) k τ ) .
x = p 1 + p 2 + p 3 + ,
N ana = I lig - I dar 1.6 × 10 - 19
N dig = N lig - N dar ( 1 + x ) .
η dig = N dig T N ana η ana .

Metrics