Abstract

A generalized theoretical model for the response of a phase–Doppler particle analyzer (PDPA) to homogeneous, spherical particles passing at arbitrary locations through a crossed beam measurement volume is presented. The model is based on the arbitrary beam theory [J. Appl. Phys. 64, 1632 (1988)] and is valid for arbitrary particle size and complex refractive index. In contrast to classical Lorenz–Mie theory, the arbitrary beam approach has the added capability of accounting for effects that are due to the presence of the finite-size crossed incident beams that are used in the PDPA measurement technique.

The theoretical model is used to compute phase shift as a function of both the particle position within the measurement volume and particle diameter (1.0 μm < diameter water droplets < 10.0 μm for both resonant and nonresonant sizes) for 30° off-axis receiver configuration. Results indicate that trajectory effects are most pronounced for particle trajectories through the edge of the crossed beam measurement volume on the side opposite the detector. Trajectories through the center of the probe volume gave phase shifts that are nearly identical to those obtained with Lorenz–Mie plane-wave theory. Phase shifts calculated for particle diameters corresponding to electric-wave resonances showed the largest deviation from the corresponding nonresonance diameter phase shifts. Phase shifts for droplets at magnetic wave resonance conditions showed smaller effects, closely following the behavior of nonresonant particle sizes. The major influence of aerosol trajectory on actual particle size determination (for both resonant and nonresonant particle sizes) is that the measured aerosol size distributions will appear broader than the actual size distribution that exists within a spray.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sizing fine particles with the phase Doppler interferometric technique

S. V. Sankar, B. J. Weber, D. Y. Kamemoto, and W. D. Bachalo
Appl. Opt. 30(33) 4914-4920 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription