Abstract

The fringe-orientation information of an interferometric fringe pattern is provided in the form of a fringe-orientation map by spin filtering. The fringe-orientation information is an important feature of fringe patterns and is helpful in many fringe-pattern processing algorithms. With the help of a fringe-orientation map the two-dimensional derivative-sign binary-fringe method is developed to extract fringe skeletons from a fringe pattern with an arbitrary fringe distribution. This fringe skeleton extraction method does not require thresholds and a thinning process. It is relatively robust and highly accurate.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. J. Funnell, “Image processing applied to the interactive analysis of interferometric fringes,” Appl. Opt. 20, 3245–3250 (1981).
    [CrossRef] [PubMed]
  2. F. Zhang, M. S. Shu, P. Chen, “Digital image analysis system for photoelasticity,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 806–809 (1987).
  3. H. E. Cline, W. E. Lorensen, A. S. Holik, “Automatic moiré contouring,” Appl. Opt. 23, 1454–1459 (1984).
    [CrossRef] [PubMed]
  4. O. Kafri, R. Ashkenazi, “Line thinning algorithm for nearly straight moiré fringes,” Opt. Eng. 25, 495–498 (1986).
  5. S. J. Marshall, R. C. Rixon, M. M. Caulfield, P. M. Mackenzie, “The application of automatic fringe analysis in fracture mechanics,” Opt. Lasers Eng. 7, 175–193 (1987).
    [CrossRef]
  6. F. Becker, Y. Yu, “Digital fringe reduction techniques applied to the measurement of three-dimensional transonic flow fields,” Opt. Eng. 24, 429–434 (1985).
  7. N. Eichhorn, W. Osten, “An algorithm for the fast derivation of line structures from interferograms,” J. Mod. Opt. 35, 1717–1725 (1988).
    [CrossRef]
  8. H. Winter, S. Unger, W. Osten, “The application of adaptive and anisotropic filtering for the extraction of fringe pattern skeletons,” in Fringe '89, Automatic Processing of Fringe Patterns, W. Osten, R. J. Pryputniewicz, eds. (Akademie-Verlag, Berlin, 1989), pp. 158–166.
  9. Q. F. Yu, “Spin filtering processes and automatic extraction of fringe center lines from interferometric patterns,” Appl. Opt. 27, 3782–3784 (1988).
    [CrossRef] [PubMed]
  10. H. Tan, J. D. Trolinger, D. Modarress, “An automated holographic interferometry data reduction system,” in High Speed Photography, Videography, and Photonics TV, B. G. Ponseggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.693, 161–165 (1986).
  11. Q. F. Yu, X. L. Liu, K. Andresen, “New spin filters for interferometric fringe patterns and grating patterns,” Appl. Opt. 33, 3705–3711(1994).
    [CrossRef] [PubMed]

1994 (1)

1988 (2)

Q. F. Yu, “Spin filtering processes and automatic extraction of fringe center lines from interferometric patterns,” Appl. Opt. 27, 3782–3784 (1988).
[CrossRef] [PubMed]

N. Eichhorn, W. Osten, “An algorithm for the fast derivation of line structures from interferograms,” J. Mod. Opt. 35, 1717–1725 (1988).
[CrossRef]

1987 (1)

S. J. Marshall, R. C. Rixon, M. M. Caulfield, P. M. Mackenzie, “The application of automatic fringe analysis in fracture mechanics,” Opt. Lasers Eng. 7, 175–193 (1987).
[CrossRef]

1986 (1)

O. Kafri, R. Ashkenazi, “Line thinning algorithm for nearly straight moiré fringes,” Opt. Eng. 25, 495–498 (1986).

1985 (1)

F. Becker, Y. Yu, “Digital fringe reduction techniques applied to the measurement of three-dimensional transonic flow fields,” Opt. Eng. 24, 429–434 (1985).

1984 (1)

1981 (1)

Andresen, K.

Ashkenazi, R.

O. Kafri, R. Ashkenazi, “Line thinning algorithm for nearly straight moiré fringes,” Opt. Eng. 25, 495–498 (1986).

Becker, F.

F. Becker, Y. Yu, “Digital fringe reduction techniques applied to the measurement of three-dimensional transonic flow fields,” Opt. Eng. 24, 429–434 (1985).

Caulfield, M. M.

S. J. Marshall, R. C. Rixon, M. M. Caulfield, P. M. Mackenzie, “The application of automatic fringe analysis in fracture mechanics,” Opt. Lasers Eng. 7, 175–193 (1987).
[CrossRef]

Chen, P.

F. Zhang, M. S. Shu, P. Chen, “Digital image analysis system for photoelasticity,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 806–809 (1987).

Cline, H. E.

Eichhorn, N.

N. Eichhorn, W. Osten, “An algorithm for the fast derivation of line structures from interferograms,” J. Mod. Opt. 35, 1717–1725 (1988).
[CrossRef]

Funnell, W. R. J.

Holik, A. S.

Kafri, O.

O. Kafri, R. Ashkenazi, “Line thinning algorithm for nearly straight moiré fringes,” Opt. Eng. 25, 495–498 (1986).

Liu, X. L.

Lorensen, W. E.

Mackenzie, P. M.

S. J. Marshall, R. C. Rixon, M. M. Caulfield, P. M. Mackenzie, “The application of automatic fringe analysis in fracture mechanics,” Opt. Lasers Eng. 7, 175–193 (1987).
[CrossRef]

Marshall, S. J.

S. J. Marshall, R. C. Rixon, M. M. Caulfield, P. M. Mackenzie, “The application of automatic fringe analysis in fracture mechanics,” Opt. Lasers Eng. 7, 175–193 (1987).
[CrossRef]

Modarress, D.

H. Tan, J. D. Trolinger, D. Modarress, “An automated holographic interferometry data reduction system,” in High Speed Photography, Videography, and Photonics TV, B. G. Ponseggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.693, 161–165 (1986).

Osten, W.

N. Eichhorn, W. Osten, “An algorithm for the fast derivation of line structures from interferograms,” J. Mod. Opt. 35, 1717–1725 (1988).
[CrossRef]

H. Winter, S. Unger, W. Osten, “The application of adaptive and anisotropic filtering for the extraction of fringe pattern skeletons,” in Fringe '89, Automatic Processing of Fringe Patterns, W. Osten, R. J. Pryputniewicz, eds. (Akademie-Verlag, Berlin, 1989), pp. 158–166.

Rixon, R. C.

S. J. Marshall, R. C. Rixon, M. M. Caulfield, P. M. Mackenzie, “The application of automatic fringe analysis in fracture mechanics,” Opt. Lasers Eng. 7, 175–193 (1987).
[CrossRef]

Shu, M. S.

F. Zhang, M. S. Shu, P. Chen, “Digital image analysis system for photoelasticity,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 806–809 (1987).

Tan, H.

H. Tan, J. D. Trolinger, D. Modarress, “An automated holographic interferometry data reduction system,” in High Speed Photography, Videography, and Photonics TV, B. G. Ponseggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.693, 161–165 (1986).

Trolinger, J. D.

H. Tan, J. D. Trolinger, D. Modarress, “An automated holographic interferometry data reduction system,” in High Speed Photography, Videography, and Photonics TV, B. G. Ponseggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.693, 161–165 (1986).

Unger, S.

H. Winter, S. Unger, W. Osten, “The application of adaptive and anisotropic filtering for the extraction of fringe pattern skeletons,” in Fringe '89, Automatic Processing of Fringe Patterns, W. Osten, R. J. Pryputniewicz, eds. (Akademie-Verlag, Berlin, 1989), pp. 158–166.

Winter, H.

H. Winter, S. Unger, W. Osten, “The application of adaptive and anisotropic filtering for the extraction of fringe pattern skeletons,” in Fringe '89, Automatic Processing of Fringe Patterns, W. Osten, R. J. Pryputniewicz, eds. (Akademie-Verlag, Berlin, 1989), pp. 158–166.

Yu, Q. F.

Yu, Y.

F. Becker, Y. Yu, “Digital fringe reduction techniques applied to the measurement of three-dimensional transonic flow fields,” Opt. Eng. 24, 429–434 (1985).

Zhang, F.

F. Zhang, M. S. Shu, P. Chen, “Digital image analysis system for photoelasticity,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 806–809 (1987).

Appl. Opt. (4)

J. Mod. Opt. (1)

N. Eichhorn, W. Osten, “An algorithm for the fast derivation of line structures from interferograms,” J. Mod. Opt. 35, 1717–1725 (1988).
[CrossRef]

Opt. Eng. (2)

O. Kafri, R. Ashkenazi, “Line thinning algorithm for nearly straight moiré fringes,” Opt. Eng. 25, 495–498 (1986).

F. Becker, Y. Yu, “Digital fringe reduction techniques applied to the measurement of three-dimensional transonic flow fields,” Opt. Eng. 24, 429–434 (1985).

Opt. Lasers Eng. (1)

S. J. Marshall, R. C. Rixon, M. M. Caulfield, P. M. Mackenzie, “The application of automatic fringe analysis in fracture mechanics,” Opt. Lasers Eng. 7, 175–193 (1987).
[CrossRef]

Other (3)

H. Winter, S. Unger, W. Osten, “The application of adaptive and anisotropic filtering for the extraction of fringe pattern skeletons,” in Fringe '89, Automatic Processing of Fringe Patterns, W. Osten, R. J. Pryputniewicz, eds. (Akademie-Verlag, Berlin, 1989), pp. 158–166.

F. Zhang, M. S. Shu, P. Chen, “Digital image analysis system for photoelasticity,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 806–809 (1987).

H. Tan, J. D. Trolinger, D. Modarress, “An automated holographic interferometry data reduction system,” in High Speed Photography, Videography, and Photonics TV, B. G. Ponseggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.693, 161–165 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Direction defintion for fringe orientation.

Fig. 2
Fig. 2

(a) Simulated fringe pattern with five circular fringes and Gaussian random noise with an amplitude of 60 added; (b) the intensity distribution of (a) in the cross section of line number 200.

Fig. 3
Fig. 3

Fringe orientation map of Fig. 2(a) obtained by a spin filter with a window size of 7 × 7 pixels.

Fig. 4
Fig. 4

Resultant fringe-orientation map of Fig. 3 after median filtering is applied twice with a window size of 7 × 7 pixels.

Fig. 5
Fig. 5

Step chart of a derivative-sign binary-fringe image: curve (a), intensity distribution of a cross section of a fringe pattern; curve (b), intensity distribution of the derivative-sign binary-fringe pattern of curve (a); curve (c), fringe skeletons obtained by extraction of the boundaries of the binary fringes.

Fig. 6
Fig. 6

Derivative-sign binary-fringe image of Fig. 2(a) after the binary spin filtering.

Fig. 7
Fig. 7

Fringe skeletons of Fig. 2(a) extracted from Fig. 6 by Eq. (3).

Fig. 8
Fig. 8

Fringe direction jump lines of Fig. 4 highlighted on a darkened orientation map.

Fig. 9
Fig. 9

Fringe skeletons of Fig. 7 after removal of the direction jump lines.

Fig. 10
Fig. 10

Extracted fringe skeletons of Fig. 9 shown on the background of the original image of Fig. 2(a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G i j = { B G / r | i j > 0 0 G / r | i j < 0 ,
G r | i j = r = 1 n ( G i j + r G i j r ) ,
G i j = | G i j G i 1 , j | + G i j G i , j 1 | .

Metrics