Abstract

The applicability and limits of time-resolved transillumination to determine the internal details of biological tissues are investigated by phantom experiments. By means of line scans across a sharp edge, the spatial resolution (Δx) and its dependence on the time-gate width (Δt) can be determined. Additionally, measurements of completely absorbing bead pairs embedded in a turbid medium demonstrate the physical resolution in a more realistic case. The benefit of time resolution is especially high for a turbid medium with a comparatively small reduced scattering coefficient of approximately μs′ = 0.12 mm−1. Investigations with partially absorbing beads and filled plastic tubes demonstrate the high sensitivity of time-resolving techniques with respect to spatial variations in scattering or absorption coefficients that are due to the embedded disturber. In particular, it is shown that time gating is sensitive to variations in scattering coefficients.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
    [PubMed]
  2. O. Jarlman, I. Andersson, G. Balldin, S. A. Larsson, “Diagnostic accuracy of light scanning and mammography in women with dense breast,” Acta Radiol. 33, 69–71 (1992).
    [PubMed]
  3. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
    [CrossRef] [PubMed]
  4. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
    [CrossRef] [PubMed]
  5. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
    [CrossRef]
  6. J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166(3), 246–252 (1990).
    [CrossRef]
  7. T. French, E. Gratton, J. Maier, “Frequency domain imaging of thick tissues using a CCD,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 254–261 (1992).
  8. A. Knüttel, J. M. Schmitt, J. R. Knutson, “Improvement of spatial resolution in reflectance near-infrared imaging by laser-beam interference,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 405–416 (1992).
  9. S. L. Jacques, “Principles of phase-resolved optical measurements,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 143–153 (1991).
    [CrossRef]
  10. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [CrossRef] [PubMed]
  11. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
    [CrossRef] [PubMed]
  12. R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Tumor detection using time-resolved light transillumination,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 59–67 (1991).
    [CrossRef]
  13. G. Mitic, J. Kölzer, J. Otto, E. Plies, “Zeitaufgelöste Transillumination von trüben Medien,” in Lasers in Medicine, W. Waidelich, A. Hofstetter, eds. (Springer-Verlag, Berlin, 1993), pp. 479–484.
  14. R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
    [CrossRef] [PubMed]
  15. S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  16. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2184 (1990).
    [CrossRef]
  17. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurements of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  18. R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 110–119 (1991).
  19. Radiation Safety of Laser Products, Equipment Classification Requirements and User’s Guide (International Electrotechnical Commission, 1990).
  20. H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
    [CrossRef] [PubMed]
  21. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  22. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
    [CrossRef] [PubMed]
  23. J. B. Fishkin, E. Gratton, “Diffraction of intensity modulated light in strongly scattering media in the presence of a “semi-infinite” absorbing or reflecting plane bounded by a straight edge,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 362–367 (1992).
  24. O. Schuetz, H. E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modelling of time-resolved near-infrared transillumination of human breast tissue,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 123–129 (1993).
  25. F. Spiegel, H. Pulvermacher, “Optical transfer function and resolution of transillumination processes calculated by Monte Carlo simulation and diffusion theory,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 86–97 (1993).
  26. J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
    [PubMed]
  27. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-resolved transillumination of turbid media,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 26–32 (1993).
  28. S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B Biol. 16, 155–167 (1992).
    [CrossRef]
  29. J. C. Hebden, “Line scan acquisition for time-resolved imaging through scattering media,” Opt. Eng. 32, 626–633 (1993).
    [CrossRef]

1993 (3)

1992 (4)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B Biol. 16, 155–167 (1992).
[CrossRef]

O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
[PubMed]

O. Jarlman, I. Andersson, G. Balldin, S. A. Larsson, “Diagnostic accuracy of light scanning and mammography in women with dense breast,” Acta Radiol. 33, 69–71 (1992).
[PubMed]

1991 (2)

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

1990 (5)

S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166(3), 246–252 (1990).
[CrossRef]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2184 (1990).
[CrossRef]

1989 (1)

1988 (3)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
[CrossRef]

Andersson, I.

O. Jarlman, I. Andersson, G. Balldin, S. A. Larsson, “Diagnostic accuracy of light scanning and mammography in women with dense breast,” Acta Radiol. 33, 69–71 (1992).
[PubMed]

O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
[PubMed]

Andersson-Engels, S.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B Biol. 16, 155–167 (1992).
[CrossRef]

S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 110–119 (1991).

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Tumor detection using time-resolved light transillumination,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 59–67 (1991).
[CrossRef]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
[CrossRef]

Balldin, G.

O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
[PubMed]

O. Jarlman, I. Andersson, G. Balldin, S. A. Larsson, “Diagnostic accuracy of light scanning and mammography in women with dense breast,” Acta Radiol. 33, 69–71 (1992).
[PubMed]

Bartelt, H.

O. Schuetz, H. E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modelling of time-resolved near-infrared transillumination of human breast tissue,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 123–129 (1993).

Berg, R.

R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B Biol. 16, 155–167 (1992).
[CrossRef]

S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Tumor detection using time-resolved light transillumination,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 59–67 (1991).
[CrossRef]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 110–119 (1991).

Berndt, K.

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166(3), 246–252 (1990).
[CrossRef]

Boretsky, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Chance, B.

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurements of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2184 (1990).
[CrossRef]

Cohen, P.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
[CrossRef]

Davies, E. R.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
[CrossRef]

Finander, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Fishkin, J. B.

J. B. Fishkin, E. Gratton, “Diffraction of intensity modulated light in strongly scattering media in the presence of a “semi-infinite” absorbing or reflecting plane bounded by a straight edge,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 362–367 (1992).

Fountain, M.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

French, T.

T. French, E. Gratton, J. Maier, “Frequency domain imaging of thick tissues using a CCD,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 254–261 (1992).

Gratton, E.

T. French, E. Gratton, J. Maier, “Frequency domain imaging of thick tissues using a CCD,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 254–261 (1992).

J. B. Fishkin, E. Gratton, “Diffraction of intensity modulated light in strongly scattering media in the presence of a “semi-infinite” absorbing or reflecting plane bounded by a straight edge,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 362–367 (1992).

Greenfeld, R.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, “Line scan acquisition for time-resolved imaging through scattering media,” Opt. Eng. 32, 626–633 (1993).
[CrossRef]

J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
[PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

Holtom, G.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Jackson, P. C.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, “Principles of phase-resolved optical measurements,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 143–153 (1991).
[CrossRef]

Jarlman, O.

R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
[CrossRef] [PubMed]

O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
[PubMed]

O. Jarlman, I. Andersson, G. Balldin, S. A. Larsson, “Diagnostic accuracy of light scanning and mammography in women with dense breast,” Acta Radiol. 33, 69–71 (1992).
[PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 110–119 (1991).

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Tumor detection using time-resolved light transillumination,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 59–67 (1991).
[CrossRef]

Kaufmann, K.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Kent, J.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Key, H.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Klingenbeck-Regn, K.

O. Schuetz, H. E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modelling of time-resolved near-infrared transillumination of human breast tissue,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 123–129 (1993).

Knutson, J. R.

A. Knüttel, J. M. Schmitt, J. R. Knutson, “Improvement of spatial resolution in reflectance near-infrared imaging by laser-beam interference,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 405–416 (1992).

Knüttel, A.

A. Knüttel, J. M. Schmitt, J. R. Knutson, “Improvement of spatial resolution in reflectance near-infrared imaging by laser-beam interference,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 405–416 (1992).

Kölzer, J.

G. Mitic, J. Kölzer, J. Otto, E. Plies, “Zeitaufgelöste Transillumination von trüben Medien,” in Lasers in Medicine, W. Waidelich, A. Hofstetter, eds. (Springer-Verlag, Berlin, 1993), pp. 479–484.

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-resolved transillumination of turbid media,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 26–32 (1993).

Kruger, R. A.

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166(3), 246–252 (1990).
[CrossRef]

Larsson, A. S.

O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
[PubMed]

Larsson, S. A.

O. Jarlman, I. Andersson, G. Balldin, S. A. Larsson, “Diagnostic accuracy of light scanning and mammography in women with dense breast,” Acta Radiol. 33, 69–71 (1992).
[PubMed]

Leigh, J. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Levy, W.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Linell, F.

O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
[PubMed]

Löfgren, M.

O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
[PubMed]

Maier, J.

T. French, E. Gratton, J. Maier, “Frequency domain imaging of thick tissues using a CCD,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 254–261 (1992).

McCully, K.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Mitic, G.

G. Mitic, J. Kölzer, J. Otto, E. Plies, “Zeitaufgelöste Transillumination von trüben Medien,” in Lasers in Medicine, W. Waidelich, A. Hofstetter, eds. (Springer-Verlag, Berlin, 1993), pp. 479–484.

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-resolved transillumination of turbid media,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 26–32 (1993).

Miyake, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Otto, J.

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-resolved transillumination of turbid media,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 26–32 (1993).

G. Mitic, J. Kölzer, J. Otto, E. Plies, “Zeitaufgelöste Transillumination von trüben Medien,” in Lasers in Medicine, W. Waidelich, A. Hofstetter, eds. (Springer-Verlag, Berlin, 1993), pp. 479–484.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurements of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Plies, E.

G. Mitic, J. Kölzer, J. Otto, E. Plies, “Zeitaufgelöste Transillumination von trüben Medien,” in Lasers in Medicine, W. Waidelich, A. Hofstetter, eds. (Springer-Verlag, Berlin, 1993), pp. 479–484.

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-resolved transillumination of turbid media,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 26–32 (1993).

Prahl, S. A.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2184 (1990).
[CrossRef]

Pulvermacher, H.

F. Spiegel, H. Pulvermacher, “Optical transfer function and resolution of transillumination processes calculated by Monte Carlo simulation and diffusion theory,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 86–97 (1993).

Reinfelder, H. E.

O. Schuetz, H. E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modelling of time-resolved near-infrared transillumination of human breast tissue,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 123–129 (1993).

Schmitt, J. M.

A. Knüttel, J. M. Schmitt, J. R. Knutson, “Improvement of spatial resolution in reflectance near-infrared imaging by laser-beam interference,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 405–416 (1992).

Schuetz, O.

O. Schuetz, H. E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modelling of time-resolved near-infrared transillumination of human breast tissue,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 123–129 (1993).

Smith, D. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Sölkner, G.

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-resolved transillumination of turbid media,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 26–32 (1993).

Spiegel, F.

F. Spiegel, H. Pulvermacher, “Optical transfer function and resolution of transillumination processes calculated by Monte Carlo simulation and diffusion theory,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 86–97 (1993).

Svanberg, S.

R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B Biol. 16, 155–167 (1992).
[CrossRef]

S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Tumor detection using time-resolved light transillumination,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 59–67 (1991).
[CrossRef]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 110–119 (1991).

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2184 (1990).
[CrossRef]

Wells, P. N. T.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Wilson, B. C.

Wong, K. S.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
[CrossRef]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
[CrossRef]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yoshioka, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Young, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Zinth, W.

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-resolved transillumination of turbid media,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 26–32 (1993).

Acta Radiol. (2)

O. Jarlman, G. Balldin, I. Andersson, M. Löfgren, A. S. Larsson, F. Linell, “Relation between lightscanning and the histologic and mammographic appearance of malignant breast tumors,” Acta Radiol. 33, 63–68 (1992).
[PubMed]

O. Jarlman, I. Andersson, G. Balldin, S. A. Larsson, “Diagnostic accuracy of light scanning and mammography in women with dense breast,” Acta Radiol. 33, 69–71 (1992).
[PubMed]

Anal. Biochem. (1)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Appl. Opt. (4)

Chem. Phys. Lett. (1)

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166(3), 246–252 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2184 (1990).
[CrossRef]

J. Photochem. Photobiol. B Biol. (1)

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. B Biol. 16, 155–167 (1992).
[CrossRef]

Med. Phys. (2)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

Opt. Eng. (1)

J. C. Hebden, “Line scan acquisition for time-resolved imaging through scattering media,” Opt. Eng. 32, 626–633 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (3)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical path length through tissue from direct time-of-flight measurement,” Phys. Med. Biol. 33, 1422–1433 (1988).
[CrossRef]

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in the brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Other (11)

T. French, E. Gratton, J. Maier, “Frequency domain imaging of thick tissues using a CCD,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 254–261 (1992).

A. Knüttel, J. M. Schmitt, J. R. Knutson, “Improvement of spatial resolution in reflectance near-infrared imaging by laser-beam interference,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 405–416 (1992).

S. L. Jacques, “Principles of phase-resolved optical measurements,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 143–153 (1991).
[CrossRef]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 110–119 (1991).

Radiation Safety of Laser Products, Equipment Classification Requirements and User’s Guide (International Electrotechnical Commission, 1990).

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Tumor detection using time-resolved light transillumination,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1525, 59–67 (1991).
[CrossRef]

G. Mitic, J. Kölzer, J. Otto, E. Plies, “Zeitaufgelöste Transillumination von trüben Medien,” in Lasers in Medicine, W. Waidelich, A. Hofstetter, eds. (Springer-Verlag, Berlin, 1993), pp. 479–484.

J. B. Fishkin, E. Gratton, “Diffraction of intensity modulated light in strongly scattering media in the presence of a “semi-infinite” absorbing or reflecting plane bounded by a straight edge,” in Time-Resolved Laser Spectroscopy in Biochemistry III, J. R. Lakowicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1640, 362–367 (1992).

O. Schuetz, H. E. Reinfelder, K. Klingenbeck-Regn, H. Bartelt, “Monte Carlo modelling of time-resolved near-infrared transillumination of human breast tissue,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 123–129 (1993).

F. Spiegel, H. Pulvermacher, “Optical transfer function and resolution of transillumination processes calculated by Monte Carlo simulation and diffusion theory,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 86–97 (1993).

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-resolved transillumination of turbid media,” in Laser Light Scattering in Medical Diagnostics and Therapy, B. Chance, D. T. Delpy, M. Ferrari, M. J. van Gemert, G. J. Mueller, V. V. Tuchin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2082, 26–32 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic setup for time-resolved transillumination of turbid media.

Fig. 2
Fig. 2

Measured dispersion curves on phantom and associated theoretical fit curves.

Fig. 3
Fig. 3

In vivo dispersion curves of the compressed mamma (thickness D) and corresponding theoretical fit curves for three volunteers.

Fig. 4
Fig. 4

Edge-spread functions for different time gates.

Fig. 5
Fig. 5

Spatial resolution versus end-of-gate time and light intensity (the measurement symbols represent different time gates). The squares correspond to the top horizontal scale and the circles correspond to the bottom scale.

Fig. 6
Fig. 6

Influence of an increase in absorption on the achievable improvement in spatial resolution by time gating.

Fig. 7
Fig. 7

Spatial resolution in relation to end-of-gate time for consecutively increasing reduced scattering coefficients (a) μs′ = 0.12–4.5 mm−1, (b) μs′ = 0.048–0.12 mm−1.

Fig. 8
Fig. 8

Line scan across pairs of blackened beads with diameters of 6, 7, and 8 mm. Reduced scattering coefficients of the surrounding medium: (a) μs′ = 0.9 mm−1, (b) μs′ = 0.12 mm−1.

Fig. 9
Fig. 9

Line scan across a chain of blackened beads with diameters of 2–7 mm. Reduced scattering coefficients of the surrounding medium: (a) μs′ = 0.9 mm−1, (b) μs′ = 0.12 mm−1.

Fig. 10
Fig. 10

Scan across bead pairs from Plexiglas with bead diameters of 6, 7, and 8 mm.

Fig. 11
Fig. 11

Scan across bead pairs from partially absorbing plastic with absorption coefficients (a) μA = 0.7 mm−1, (b) μA = 0.07 mm−1.

Fig. 12
Fig. 12

Scan across plastic tubes filled with diluted ink. Corresponding absorption coefficients: (a) μA = 0.014 mm−1, (b) μA = 0.13 mm−1, (c) μA = 0.25 mm−1, (d) μA = 0.50 mm−1.

Fig. 13
Fig. 13

Scan across bead pairs from partially absorbing plastic in surrounding media with absorption coefficients (a) μA < 0.001 mm−1, (b) μA = 0.0069 mm−1, (c) μA = 0.020 mm−1.

Fig. 14
Fig. 14

Scan across a plastic tube filled with condensed milk, which differs only in terms of scattering from the surrounding medium.

Fig. 15
Fig. 15

Scan across a plastic tube filled with ink-tinted milk, which differs only in terms of absorption from the surrounding medium.

Tables (1)

Tables Icon

Table 1 Reduced Scattering and Absorption Coefficients for Mammary Tissue In Vivo at 800 nm Compared with Milk at 532 and 800 nm

Metrics