Abstract

A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 μm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Schultz, N. F. Hadley, “Structural colors of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).
  2. C. W. Mason, “Structural colours in insects. II. Iridescent colors,” J. Phys. Chem. 31, 1856–1872 (1927).
    [CrossRef]
  3. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30, 3492–3500 (1991).
    [CrossRef] [PubMed]
  4. H. E. Hinton, G. M. Jarman, “Physiological colour change in the elytra of the Hercules bettle, Dynastes Hercules,” J. Insect Physiol. 19, 533–539 (1973).
    [CrossRef]
  5. P. Y. Wong, C. K. Hess, I. N. Miaoulis, “Thermal radiation modeling in multilayer thin film structures,” Int. J. Heat Mass Transfer 35, 3313–3321 (1992).
    [CrossRef]
  6. I. M. Miaoulis, B. D. Heilman, “Multilayer thin film structures in butterflies: a thermal regulation mechanism,” submitted to J. Theor. Biol.
  7. J. S. Hseieh, Solar Energy Engineering (Prentice-Hall, Englewood Cliffs, N.J., 1986), Chap. 3.
  8. A. A. M. Sayigh, Solar Energy Engineering (Academic, New York, 1977).
  9. H. Evans, Insect Biology (Addison-Wesley, Reading, Mass., 1984), Chap. 3.
  10. M. Rockstein, The Physiology of Insecta (Academic, New York, 1974).
  11. T. D. Schultz, M. A. Rankin, “The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cincindela),” J. Exp. Biol. 117, 87–110 (1985).
  12. J. Huxley, “The basis of structural colour variation in two species of Papilio,” J. Entomol. Ser. A 50, 9–22 (1975).
    [CrossRef]
  13. L. T. Wasserthal, “The role of butterfly wings in the regulation of body temperature,” J. Insect Physiol. 21, 1921–1930 (1975).
    [CrossRef]
  14. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, Washington, D.C., 1955), pp. 46–95.
  15. F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1985), pp. 530–535.
  16. Measurements were taken by HunterLab, Reston, Va 22090.
  17. H. Ghiradella, “Structure of iridescent lepidopteran scales: variations on several themes,” Ann. Entomol. Soc. Am. 77, 637–345 (1984).

1992 (1)

P. Y. Wong, C. K. Hess, I. N. Miaoulis, “Thermal radiation modeling in multilayer thin film structures,” Int. J. Heat Mass Transfer 35, 3313–3321 (1992).
[CrossRef]

1991 (1)

1987 (1)

T. D. Schultz, N. F. Hadley, “Structural colors of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).

1985 (1)

T. D. Schultz, M. A. Rankin, “The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cincindela),” J. Exp. Biol. 117, 87–110 (1985).

1984 (1)

H. Ghiradella, “Structure of iridescent lepidopteran scales: variations on several themes,” Ann. Entomol. Soc. Am. 77, 637–345 (1984).

1975 (2)

J. Huxley, “The basis of structural colour variation in two species of Papilio,” J. Entomol. Ser. A 50, 9–22 (1975).
[CrossRef]

L. T. Wasserthal, “The role of butterfly wings in the regulation of body temperature,” J. Insect Physiol. 21, 1921–1930 (1975).
[CrossRef]

1973 (1)

H. E. Hinton, G. M. Jarman, “Physiological colour change in the elytra of the Hercules bettle, Dynastes Hercules,” J. Insect Physiol. 19, 533–539 (1973).
[CrossRef]

1927 (1)

C. W. Mason, “Structural colours in insects. II. Iridescent colors,” J. Phys. Chem. 31, 1856–1872 (1927).
[CrossRef]

DeWitt, D. P.

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1985), pp. 530–535.

Evans, H.

H. Evans, Insect Biology (Addison-Wesley, Reading, Mass., 1984), Chap. 3.

Ghiradella, H.

H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30, 3492–3500 (1991).
[CrossRef] [PubMed]

H. Ghiradella, “Structure of iridescent lepidopteran scales: variations on several themes,” Ann. Entomol. Soc. Am. 77, 637–345 (1984).

Hadley, N. F.

T. D. Schultz, N. F. Hadley, “Structural colors of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, Washington, D.C., 1955), pp. 46–95.

Heilman, B. D.

I. M. Miaoulis, B. D. Heilman, “Multilayer thin film structures in butterflies: a thermal regulation mechanism,” submitted to J. Theor. Biol.

Hess, C. K.

P. Y. Wong, C. K. Hess, I. N. Miaoulis, “Thermal radiation modeling in multilayer thin film structures,” Int. J. Heat Mass Transfer 35, 3313–3321 (1992).
[CrossRef]

Hinton, H. E.

H. E. Hinton, G. M. Jarman, “Physiological colour change in the elytra of the Hercules bettle, Dynastes Hercules,” J. Insect Physiol. 19, 533–539 (1973).
[CrossRef]

Hseieh, J. S.

J. S. Hseieh, Solar Energy Engineering (Prentice-Hall, Englewood Cliffs, N.J., 1986), Chap. 3.

Huxley, J.

J. Huxley, “The basis of structural colour variation in two species of Papilio,” J. Entomol. Ser. A 50, 9–22 (1975).
[CrossRef]

Incropera, F. P.

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1985), pp. 530–535.

Jarman, G. M.

H. E. Hinton, G. M. Jarman, “Physiological colour change in the elytra of the Hercules bettle, Dynastes Hercules,” J. Insect Physiol. 19, 533–539 (1973).
[CrossRef]

Mason, C. W.

C. W. Mason, “Structural colours in insects. II. Iridescent colors,” J. Phys. Chem. 31, 1856–1872 (1927).
[CrossRef]

Miaoulis, I. M.

I. M. Miaoulis, B. D. Heilman, “Multilayer thin film structures in butterflies: a thermal regulation mechanism,” submitted to J. Theor. Biol.

Miaoulis, I. N.

P. Y. Wong, C. K. Hess, I. N. Miaoulis, “Thermal radiation modeling in multilayer thin film structures,” Int. J. Heat Mass Transfer 35, 3313–3321 (1992).
[CrossRef]

Rankin, M. A.

T. D. Schultz, M. A. Rankin, “The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cincindela),” J. Exp. Biol. 117, 87–110 (1985).

Rockstein, M.

M. Rockstein, The Physiology of Insecta (Academic, New York, 1974).

Sayigh, A. A. M.

A. A. M. Sayigh, Solar Energy Engineering (Academic, New York, 1977).

Schultz, T. D.

T. D. Schultz, N. F. Hadley, “Structural colors of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).

T. D. Schultz, M. A. Rankin, “The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cincindela),” J. Exp. Biol. 117, 87–110 (1985).

Wasserthal, L. T.

L. T. Wasserthal, “The role of butterfly wings in the regulation of body temperature,” J. Insect Physiol. 21, 1921–1930 (1975).
[CrossRef]

Wong, P. Y.

P. Y. Wong, C. K. Hess, I. N. Miaoulis, “Thermal radiation modeling in multilayer thin film structures,” Int. J. Heat Mass Transfer 35, 3313–3321 (1992).
[CrossRef]

Ann. Entomol. Soc. Am. (1)

H. Ghiradella, “Structure of iridescent lepidopteran scales: variations on several themes,” Ann. Entomol. Soc. Am. 77, 637–345 (1984).

Appl. Opt. (1)

Int. J. Heat Mass Transfer (1)

P. Y. Wong, C. K. Hess, I. N. Miaoulis, “Thermal radiation modeling in multilayer thin film structures,” Int. J. Heat Mass Transfer 35, 3313–3321 (1992).
[CrossRef]

J. Entomol. Ser. A (1)

J. Huxley, “The basis of structural colour variation in two species of Papilio,” J. Entomol. Ser. A 50, 9–22 (1975).
[CrossRef]

J. Exp. Biol. (1)

T. D. Schultz, M. A. Rankin, “The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cincindela),” J. Exp. Biol. 117, 87–110 (1985).

J. Insect Physiol. (2)

H. E. Hinton, G. M. Jarman, “Physiological colour change in the elytra of the Hercules bettle, Dynastes Hercules,” J. Insect Physiol. 19, 533–539 (1973).
[CrossRef]

L. T. Wasserthal, “The role of butterfly wings in the regulation of body temperature,” J. Insect Physiol. 21, 1921–1930 (1975).
[CrossRef]

J. Phys. Chem. (1)

C. W. Mason, “Structural colours in insects. II. Iridescent colors,” J. Phys. Chem. 31, 1856–1872 (1927).
[CrossRef]

Physiol. Zool. (1)

T. D. Schultz, N. F. Hadley, “Structural colors of tiger beetles and their role in heat transfer through the integument,” Physiol. Zool. 60, 737–745 (1987).

Other (8)

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, Washington, D.C., 1955), pp. 46–95.

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1985), pp. 530–535.

Measurements were taken by HunterLab, Reston, Va 22090.

I. M. Miaoulis, B. D. Heilman, “Multilayer thin film structures in butterflies: a thermal regulation mechanism,” submitted to J. Theor. Biol.

J. S. Hseieh, Solar Energy Engineering (Prentice-Hall, Englewood Cliffs, N.J., 1986), Chap. 3.

A. A. M. Sayigh, Solar Energy Engineering (Academic, New York, 1977).

H. Evans, Insect Biology (Addison-Wesley, Reading, Mass., 1984), Chap. 3.

M. Rockstein, The Physiology of Insecta (Academic, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Solar radiation modeling schematic; θB is the angle of the beam radiation with respect to the normal.

Fig. 2
Fig. 2

Butterfly thin films: A, butterfly, B, magnification showing wing scales (~100 μm in length); C, top view of singular wing scale and its cross section; D, electron microscope magnification of the wing scale cross section showing the thin films responsible for iridescence (dark lines represent chitin films and white space depicts air gaps); E, numerical model for the thin films (more detail shown in Fig. 3).

Fig. 3
Fig. 3

Model of the layered structure in a butterfly wing scale, where n is the index of refraction and d is the film thickness.

Fig. 4
Fig. 4

Comparison between numerical and experimental results for P. palinurus: solid curve, our experimental results; dashed curve, Huxley’s results; dotted curve, our numerical model.

Fig. 5
Fig. 5

Effect of varying chitin film thickness on heat flux with air-film thicknesses fixed at 0.08 μm: solid curve, solar beam absorption; dashed curve, emissivity; dotted curve; solar diffuse absorption. Beam radiation is at normal incidence (θ = 0) to a film structure with four chitin films separated by three air gaps, as shown in Fig. 3.

Fig. 6
Fig. 6

Reflectivity for a film structure of chitin thickness 0.04 μm and air thickness 0.08 μm: A, reflectivity versus incident radiation wavelength; B, solar radiation (dotted curve) and reflected radiation (solid curve) as a function of wavelength.

Fig. 7
Fig. 7

Reflectivity for a film structure of chitin thickness 0.11 μm and air thickness 0.08 μm: A and B, same as in Fig. 6.

Fig. 8
Fig. 8

Reflectivity for a film structure of chitin thickness 0.15 μm and air thickness 0.08 μm: A and B, same as in Fig. 6.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H d = C H B n F s ,
π 2 + s < θ diffuse < π 2 ,
ρ s ( θ ) = 0 . 29 3 . 0 ρ ( λ , θ ) H λ d λ ,
R s ( θ ) = H B n ρ s ( θ ) .
ρ d = 1 ( π s ) π / 2 + s π / 2 ρ s ( θ ) d θ .
R d = H d ρ d .

Metrics