Abstract

It is shown that optical surfaces traditionally ground in conventional glasses with high coefficients of thermal expansion may be polished by irradiation with a space- and time-controlled uniform CO2 laser beam. Comparisons of a theoretical simulation model of the laser-driven heating process with the experimental results allow us to determine the conditions for successful and reliable use of this technique. The technique can be applied indiscriminately to preheated samples made of different glasses, with any topography, and, of any size in a limited range that depends only on the available laser power.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Temple, M. J. Soileau, “1.06-μm laser-induced breakdown of CO2-laser polished fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 180–189 (1980).
  2. P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increaed laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982).
    [CrossRef] [PubMed]
  3. R. M. Wood, Laser Damage in Optical Materials (Hilger, Bristol, UK, 1986), Chap. 3, pp. 79, 80.
  4. Y. M. Xiao, M. Bass, “Thermal-stress limitations to laser fire polishing of glasses,” Appl. Opt. 22, 2933–2936 (1983).
    [CrossRef] [PubMed]
  5. E. Plumat, “Technologie du poli au feu,” in Table Ronde sur le Polissage du Verre, Union Scientifique Continentale du Verre (Union Scientifique Continentale du Verre, Charleroi, Bruxelles, 1960), pp. 221–230; M. I. Peyches, “Conclusions table ronde,” ibid., pp. 253–258.
  6. E. M. Breinan, B. H. Kear, “Rapid solidification laser processing at high power density,” in Laser Materials Processing, M. Bass, ed., Vol. 3 of Materials Processing—Theory and Practices (North-Holland, Amsterdam, 1983), pp. 235–295.
  7. D. A. McGraw, “The transfer of heat in glass during forming,” J. Am. Ceram. Soc. 44, 353–363 (1961); J. M. Fernández Navarro, El Vidrio (Consejo Superior de Investigaciones Científicas, Madrid, 1985), Chap. 13, p. 405.
    [CrossRef]
  8. J. Arasa, J. Caum, J. Armengol, N. Lupon, F. Pi, F. Laguarta, “Optical glass polishing by laser surface heat treatment,” in Abstracts of the First Conference on Lasers and Electro-Optics (Madrid Trade Fair Organization, Madrid, 1990), p. 94.
  9. N. Lupon, “Contributions to the study of optical glass polishing by CO2 laser surface heat treatment,” degree dissertation (Departament d’Òptica i Optometria, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain, 1993).
  10. K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988).
    [CrossRef]

1988

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988).
[CrossRef]

1983

1982

1980

P. A. Temple, M. J. Soileau, “1.06-μm laser-induced breakdown of CO2-laser polished fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 180–189 (1980).

1961

D. A. McGraw, “The transfer of heat in glass during forming,” J. Am. Ceram. Soc. 44, 353–363 (1961); J. M. Fernández Navarro, El Vidrio (Consejo Superior de Investigaciones Científicas, Madrid, 1985), Chap. 13, p. 405.
[CrossRef]

Arasa, J.

J. Arasa, J. Caum, J. Armengol, N. Lupon, F. Pi, F. Laguarta, “Optical glass polishing by laser surface heat treatment,” in Abstracts of the First Conference on Lasers and Electro-Optics (Madrid Trade Fair Organization, Madrid, 1990), p. 94.

Armengol, J.

J. Arasa, J. Caum, J. Armengol, N. Lupon, F. Pi, F. Laguarta, “Optical glass polishing by laser surface heat treatment,” in Abstracts of the First Conference on Lasers and Electro-Optics (Madrid Trade Fair Organization, Madrid, 1990), p. 94.

Bass, M.

Breinan, E. M.

E. M. Breinan, B. H. Kear, “Rapid solidification laser processing at high power density,” in Laser Materials Processing, M. Bass, ed., Vol. 3 of Materials Processing—Theory and Practices (North-Holland, Amsterdam, 1983), pp. 235–295.

Caum, J.

J. Arasa, J. Caum, J. Armengol, N. Lupon, F. Pi, F. Laguarta, “Optical glass polishing by laser surface heat treatment,” in Abstracts of the First Conference on Lasers and Electro-Optics (Madrid Trade Fair Organization, Madrid, 1990), p. 94.

Creath, K.

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988).
[CrossRef]

Kear, B. H.

E. M. Breinan, B. H. Kear, “Rapid solidification laser processing at high power density,” in Laser Materials Processing, M. Bass, ed., Vol. 3 of Materials Processing—Theory and Practices (North-Holland, Amsterdam, 1983), pp. 235–295.

Laguarta, F.

J. Arasa, J. Caum, J. Armengol, N. Lupon, F. Pi, F. Laguarta, “Optical glass polishing by laser surface heat treatment,” in Abstracts of the First Conference on Lasers and Electro-Optics (Madrid Trade Fair Organization, Madrid, 1990), p. 94.

Lowdermilk, W. H.

Lupon, N.

N. Lupon, “Contributions to the study of optical glass polishing by CO2 laser surface heat treatment,” degree dissertation (Departament d’Òptica i Optometria, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain, 1993).

J. Arasa, J. Caum, J. Armengol, N. Lupon, F. Pi, F. Laguarta, “Optical glass polishing by laser surface heat treatment,” in Abstracts of the First Conference on Lasers and Electro-Optics (Madrid Trade Fair Organization, Madrid, 1990), p. 94.

McGraw, D. A.

D. A. McGraw, “The transfer of heat in glass during forming,” J. Am. Ceram. Soc. 44, 353–363 (1961); J. M. Fernández Navarro, El Vidrio (Consejo Superior de Investigaciones Científicas, Madrid, 1985), Chap. 13, p. 405.
[CrossRef]

Milam, D.

Pi, F.

J. Arasa, J. Caum, J. Armengol, N. Lupon, F. Pi, F. Laguarta, “Optical glass polishing by laser surface heat treatment,” in Abstracts of the First Conference on Lasers and Electro-Optics (Madrid Trade Fair Organization, Madrid, 1990), p. 94.

Plumat, E.

E. Plumat, “Technologie du poli au feu,” in Table Ronde sur le Polissage du Verre, Union Scientifique Continentale du Verre (Union Scientifique Continentale du Verre, Charleroi, Bruxelles, 1960), pp. 221–230; M. I. Peyches, “Conclusions table ronde,” ibid., pp. 253–258.

Soileau, M. J.

P. A. Temple, M. J. Soileau, “1.06-μm laser-induced breakdown of CO2-laser polished fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 180–189 (1980).

Temple, P. A.

P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increaed laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982).
[CrossRef] [PubMed]

P. A. Temple, M. J. Soileau, “1.06-μm laser-induced breakdown of CO2-laser polished fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 180–189 (1980).

Wood, R. M.

R. M. Wood, Laser Damage in Optical Materials (Hilger, Bristol, UK, 1986), Chap. 3, pp. 79, 80.

Xiao, Y. M.

Appl. Opt.

J. Am. Ceram. Soc.

D. A. McGraw, “The transfer of heat in glass during forming,” J. Am. Ceram. Soc. 44, 353–363 (1961); J. M. Fernández Navarro, El Vidrio (Consejo Superior de Investigaciones Científicas, Madrid, 1985), Chap. 13, p. 405.
[CrossRef]

Natl. Bur. Stand. (U.S.) Spec. Publ.

P. A. Temple, M. J. Soileau, “1.06-μm laser-induced breakdown of CO2-laser polished fused SiO2,” Natl. Bur. Stand. (U.S.) Spec. Publ. 620, 180–189 (1980).

Prog. Opt.

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988).
[CrossRef]

Other

R. M. Wood, Laser Damage in Optical Materials (Hilger, Bristol, UK, 1986), Chap. 3, pp. 79, 80.

E. Plumat, “Technologie du poli au feu,” in Table Ronde sur le Polissage du Verre, Union Scientifique Continentale du Verre (Union Scientifique Continentale du Verre, Charleroi, Bruxelles, 1960), pp. 221–230; M. I. Peyches, “Conclusions table ronde,” ibid., pp. 253–258.

E. M. Breinan, B. H. Kear, “Rapid solidification laser processing at high power density,” in Laser Materials Processing, M. Bass, ed., Vol. 3 of Materials Processing—Theory and Practices (North-Holland, Amsterdam, 1983), pp. 235–295.

J. Arasa, J. Caum, J. Armengol, N. Lupon, F. Pi, F. Laguarta, “Optical glass polishing by laser surface heat treatment,” in Abstracts of the First Conference on Lasers and Electro-Optics (Madrid Trade Fair Organization, Madrid, 1990), p. 94.

N. Lupon, “Contributions to the study of optical glass polishing by CO2 laser surface heat treatment,” degree dissertation (Departament d’Òptica i Optometria, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Temperature as a function of time at different glass layers at depth increases of 200 μm, corresponding to a 0.5-s CO2 laser irradiation with uniform and constant intensity at the surface (x = 0 mm) of I 0 = 235 W/cm2.

Fig. 2
Fig. 2

Same as in Fig. 1 but corresponding to a 6-s constant irradiation intensity of I 0 = 50 W/cm2.

Fig. 3
Fig. 3

Same as in Figs. 1 and 2 but corresponding to a heating cycle of 1-s linear rising ramp from I 0 = 0 W/cm2 to I 0 = 125 W/cm2, followed by a 0.3-s constant irradiation of intensity I 0 = 125 W/cm2 and a final 1-s linear descending ramp from I 0 = 125 W/cm2 to I 0 = 0 W/cm2.

Fig. 4
Fig. 4

Schematic drawing of the laser-irradiation experiment.

Fig. 5
Fig. 5

Schematic drawing of the detection systems used in the experiment.

Fig. 6
Fig. 6

Ground surface of a conventional B-270 optical glass after successful laser fire polishing of an 80-mm2 area.

Fig. 7
Fig. 7

Micrograph of the B-270 glass surface represented in Fig. 6 showing the transition region between irradiated and nonirradiated areas. Full scale is equivalent to 200 μm.

Fig. 8
Fig. 8

Measured profiles of (a) ground and (b) laser-polished surfaces of the B-270 glass sample represented in Figs. 6 and 7.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ δ x [ k ( T ) δ T ( x , t ) δ x ] + g ( x , t ) = ρ c δ T ( x , t ) δ t ,
g ( x , t ) = ( 1 - R ) I 0 ( t ) a exp ( - a x ) ,

Metrics