Abstract

A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two étalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-étalon laser system. High spectral purity (>99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm−1 (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm−1 (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity étalons is presented, and a closed-loop computer control for active stabilization of the two intracavity talons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (≈1.5 h) of less than 0.7 pm in the laboratory.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
    [CrossRef] [PubMed]
  2. E. V. Browell, “Remote sensing of tropospheric gases and aerosols with an airborne DIAL system,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds., Vol. 39 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1983), pp. 138–147.
  3. E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL water vapor and aerosols measurements over the gulf stream,” in Twelfth International Laser Radar Conference, G. Mégie, ed. (Centre National de la Recherche Scientifique, Paris, 1984), pp. 13–17.
  4. C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A meteorological mobile DIAL system: concepts and design,” in Thirteenth International Laser Radar Conference, NASA Conference Publ. 2431 (NASA, Washington, D.C., 1986), pp. 61–64.
  5. J. Bosenberg, “A DIAL system for high resolution water vapor measurements in the troposphere,” in Laser and Optical Remote Sensing Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 22–25.
  6. G. Ehret, W. Renger, “Atmospheric aerosol and humidity profiling using an airborne DIAL system in the near IR,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 586–589.
  7. Noah S. Higdon, Edward V. Browell, Patrick Ponsardin, Benoist E. Grossmann, Carolyn F. Butler, Thomas H. Chyba, M. Neale Mayo, Robert J Atlen, Arlene W. Heuser, William B. Grant, Syed Ismail, Shane D. Mayor, Arlen F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
  8. Built by Allied Military Laser Products, Westlake Village, Calif., under NASA contract NAS1-18051.
  9. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
    [CrossRef] [PubMed]
  10. C. Cahen, G. Megie, “A spectral limitation of the range resolved DIAL technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
    [CrossRef]
  11. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
    [CrossRef]
  12. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
    [CrossRef]
  13. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
    [CrossRef] [PubMed]
  14. R. C. Sam, “Alexandrite lasers,” in Handbook of Solid-State Lasers, P. K. Cheo, ed. (Dekker, New York, 1989), pp. 349–452.
  15. W. R. Sooy, “The natural selection of modes in a passive Q-switched laser,” Appl. Phys. Lett. 7, 36–37 (1965).
    [CrossRef]
  16. D. R. Preuss, J. L. Gole, “Three-stage birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19, 702–710 (1980).
    [CrossRef] [PubMed]
  17. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1986), Chap. 4.
  18. B. Moghrabi, F. Gaume, “Etude des épaisseurs relatives des deux Fabry–Perot d’un spectrometre purement interferentiel,” Nouv. Rev. Opt. 5, 231–236 (1974).
    [CrossRef]
  19. K. J. Ritter, T. D. Wilkerson, “High resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  20. B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: linestrength, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294(1989).
    [CrossRef]
  21. G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
    [CrossRef]
  22. P. L. Cross, N. P. Barnes, E. D. Filer, “A software system for laser design and analysis,” in Solid-State Lasers.G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 2–13 (1990).
  23. Y. S. Liu, “Line narrowing and tuning of a high-power Nd:glass laser using an intracavity Brewster-angle birefringent filter,” J. Appl. Phys. 48, 647–649 (1977).
    [CrossRef]
  24. A. Burneau, B. Humbert, “Temperature effect on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 12, 5702–5706 (1989).
    [CrossRef]
  25. P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).
  26. M. Hercher, “Tunable single mode operation of gas lasers using intracavity tilted etalons,” Appl. Opt. 8, 1103–1106 (1969).
    [CrossRef] [PubMed]
  27. C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–358 (1981).
    [CrossRef]
  28. T. Henderson, H. Rieger, “Wavelength stabilization system for a pulsed or cw laser,” Opt. Laser Technol. 18, 187–189 (1986).
    [CrossRef]
  29. K. Dasgupta, R. Srivastava, “Wavelength stabilization and control of pulsed or cw laser: a simple scheme,” Appl. Opt. 26, 3659–3662 (1987).
    [CrossRef] [PubMed]

1994

1991

1989

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

A. Burneau, B. Humbert, “Temperature effect on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 12, 5702–5706 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: linestrength, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294(1989).
[CrossRef]

1987

G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

K. Dasgupta, R. Srivastava, “Wavelength stabilization and control of pulsed or cw laser: a simple scheme,” Appl. Opt. 26, 3659–3662 (1987).
[CrossRef] [PubMed]

1986

T. Henderson, H. Rieger, “Wavelength stabilization system for a pulsed or cw laser,” Opt. Laser Technol. 18, 187–189 (1986).
[CrossRef]

1985

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
[CrossRef]

1981

C. Cahen, G. Megie, “A spectral limitation of the range resolved DIAL technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–358 (1981).
[CrossRef]

1980

D. R. Preuss, J. L. Gole, “Three-stage birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19, 702–710 (1980).
[CrossRef] [PubMed]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

1979

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

1977

Y. S. Liu, “Line narrowing and tuning of a high-power Nd:glass laser using an intracavity Brewster-angle birefringent filter,” J. Appl. Phys. 48, 647–649 (1977).
[CrossRef]

1974

B. Moghrabi, F. Gaume, “Etude des épaisseurs relatives des deux Fabry–Perot d’un spectrometre purement interferentiel,” Nouv. Rev. Opt. 5, 231–236 (1974).
[CrossRef]

1969

1965

W. R. Sooy, “The natural selection of modes in a passive Q-switched laser,” Appl. Phys. Lett. 7, 36–37 (1965).
[CrossRef]

Atherton, P. D.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).

Atlen, Robert J

Barnes, N. P.

P. L. Cross, N. P. Barnes, E. D. Filer, “A software system for laser design and analysis,” in Solid-State Lasers.G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 2–13 (1990).

Benard, J.

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A meteorological mobile DIAL system: concepts and design,” in Thirteenth International Laser Radar Conference, NASA Conference Publ. 2431 (NASA, Washington, D.C., 1986), pp. 61–64.

Bosenberg, J.

J. Bosenberg, “A DIAL system for high resolution water vapor measurements in the troposphere,” in Laser and Optical Remote Sensing Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 22–25.

Browell, E. V.

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: linestrength, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294(1989).
[CrossRef]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

E. V. Browell, “Remote sensing of tropospheric gases and aerosols with an airborne DIAL system,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds., Vol. 39 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1983), pp. 138–147.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL water vapor and aerosols measurements over the gulf stream,” in Twelfth International Laser Radar Conference, G. Mégie, ed. (Centre National de la Recherche Scientifique, Paris, 1984), pp. 13–17.

Browell, Edward V.

Bruneau, D.

Burneau, A.

A. Burneau, B. Humbert, “Temperature effect on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 12, 5702–5706 (1989).
[CrossRef]

Butler, Carolyn F.

Cahen, C.

C. Cahen, G. Megie, “A spectral limitation of the range resolved DIAL technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–358 (1981).
[CrossRef]

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A meteorological mobile DIAL system: concepts and design,” in Thirteenth International Laser Radar Conference, NASA Conference Publ. 2431 (NASA, Washington, D.C., 1986), pp. 61–64.

Carter, Arlen F.

Cazeneuve, H.

Chyba, Thomas H.

Cross, P. L.

P. L. Cross, N. P. Barnes, E. D. Filer, “A software system for laser design and analysis,” in Solid-State Lasers.G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 2–13 (1990).

Dasgupta, K.

K. Dasgupta, R. Srivastava, “Wavelength stabilization and control of pulsed or cw laser: a simple scheme,” Appl. Opt. 26, 3659–3662 (1987).
[CrossRef] [PubMed]

Dombroski, M.

G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Ehret, G.

G. Ehret, W. Renger, “Atmospheric aerosol and humidity profiling using an airborne DIAL system in the near IR,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 586–589.

Filer, E. D.

P. L. Cross, N. P. Barnes, E. D. Filer, “A software system for laser design and analysis,” in Solid-State Lasers.G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 2–13 (1990).

Gaume, F.

B. Moghrabi, F. Gaume, “Etude des épaisseurs relatives des deux Fabry–Perot d’un spectrometre purement interferentiel,” Nouv. Rev. Opt. 5, 231–236 (1974).
[CrossRef]

Gildwarg, P.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–358 (1981).
[CrossRef]

Gole, J. L.

Goroch, A. K.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL water vapor and aerosols measurements over the gulf stream,” in Twelfth International Laser Radar Conference, G. Mégie, ed. (Centre National de la Recherche Scientifique, Paris, 1984), pp. 13–17.

Grant, William B.

Grossmann, B. E.

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: linestrength, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294(1989).
[CrossRef]

Grossmann, Benoist E.

Harter, D. J.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
[CrossRef]

Heller, D. F.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
[CrossRef]

Henderson, T.

T. Henderson, H. Rieger, “Wavelength stabilization system for a pulsed or cw laser,” Opt. Laser Technol. 18, 187–189 (1986).
[CrossRef]

Hercher, M.

Hernandez, G.

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1986), Chap. 4.

Heuser, Arlene W.

Hicks, T. R.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).

Higdon, Noah S.

Humbert, B.

A. Burneau, B. Humbert, “Temperature effect on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 12, 5702–5706 (1989).
[CrossRef]

Ismail, S.

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL water vapor and aerosols measurements over the gulf stream,” in Twelfth International Laser Radar Conference, G. Mégie, ed. (Centre National de la Recherche Scientifique, Paris, 1984), pp. 13–17.

Ismail, Syed

Jegou, J. P.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–358 (1981).
[CrossRef]

Jenssen, H. P.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

Kagann, R. H.

G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Laurence, C. L.

G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Lesne, J. L.

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A meteorological mobile DIAL system: concepts and design,” in Thirteenth International Laser Radar Conference, NASA Conference Publ. 2431 (NASA, Washington, D.C., 1986), pp. 61–64.

Liu, Y. S.

Y. S. Liu, “Line narrowing and tuning of a high-power Nd:glass laser using an intracavity Brewster-angle birefringent filter,” J. Appl. Phys. 48, 647–649 (1977).
[CrossRef]

Loth, C.

Markson, R.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL water vapor and aerosols measurements over the gulf stream,” in Twelfth International Laser Radar Conference, G. Mégie, ed. (Centre National de la Recherche Scientifique, Paris, 1984), pp. 13–17.

Mayor, Shane D.

McIlrath, T. J.

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

Megie, G.

C. Cahen, G. Megie, “A spectral limitation of the range resolved DIAL technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Milrod, J.

G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Moghrabi, B.

B. Moghrabi, F. Gaume, “Etude des épaisseurs relatives des deux Fabry–Perot d’un spectrometre purement interferentiel,” Nouv. Rev. Opt. 5, 231–236 (1974).
[CrossRef]

Morris, R. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

Neale Mayo, M.

O’Dell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

Pelon, J.

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–358 (1981).
[CrossRef]

Pete, J. A.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
[CrossRef]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

Ponsardin, P.

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A meteorological mobile DIAL system: concepts and design,” in Thirteenth International Laser Radar Conference, NASA Conference Publ. 2431 (NASA, Washington, D.C., 1986), pp. 61–64.

Ponsardin, Patrick

Porteneuve, J.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–358 (1981).
[CrossRef]

Preuss, D. R.

Reay, N. K.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).

Renger, W.

G. Ehret, W. Renger, “Atmospheric aerosol and humidity profiling using an airborne DIAL system in the near IR,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 586–589.

Rieger, H.

T. Henderson, H. Rieger, “Wavelength stabilization system for a pulsed or cw laser,” Opt. Laser Technol. 18, 187–189 (1986).
[CrossRef]

Ring, J.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Sam, R. C.

R. C. Sam, “Alexandrite lasers,” in Handbook of Solid-State Lasers, P. K. Cheo, ed. (Dekker, New York, 1989), pp. 349–452.

Samelson, H.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
[CrossRef]

Schwemmer, G. K.

G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Sooy, W. R.

W. R. Sooy, “The natural selection of modes in a passive Q-switched laser,” Appl. Phys. Lett. 7, 36–37 (1965).
[CrossRef]

Srivastava, R.

K. Dasgupta, R. Srivastava, “Wavelength stabilization and control of pulsed or cw laser: a simple scheme,” Appl. Opt. 26, 3659–3662 (1987).
[CrossRef] [PubMed]

Walden, H.

G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Walling, J. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

Wilkerson, T. D.

K. J. Ritter, T. D. Wilkerson, “High resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL water vapor and aerosols measurements over the gulf stream,” in Twelfth International Laser Radar Conference, G. Mégie, ed. (Centre National de la Recherche Scientifique, Paris, 1984), pp. 13–17.

Appl. Opt.

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

K. Dasgupta, R. Srivastava, “Wavelength stabilization and control of pulsed or cw laser: a simple scheme,” Appl. Opt. 26, 3659–3662 (1987).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

W. R. Sooy, “The natural selection of modes in a passive Q-switched laser,” Appl. Phys. Lett. 7, 36–37 (1965).
[CrossRef]

IEEE J. Quantum Electron.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568–1581 (1985).
[CrossRef]

IEEE J. Quantum Electron.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
[CrossRef]

J. Appl. Phys.

Y. S. Liu, “Line narrowing and tuning of a high-power Nd:glass laser using an intracavity Brewster-angle birefringent filter,” J. Appl. Phys. 48, 647–649 (1977).
[CrossRef]

A. Burneau, B. Humbert, “Temperature effect on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 12, 5702–5706 (1989).
[CrossRef]

J. Mol. Spectrosc.

K. J. Ritter, T. D. Wilkerson, “High resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

J. Mol. Spectrosc.

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: linestrength, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294(1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

C. Cahen, G. Megie, “A spectral limitation of the range resolved DIAL technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Nouv. Rev. Opt.

B. Moghrabi, F. Gaume, “Etude des épaisseurs relatives des deux Fabry–Perot d’un spectrometre purement interferentiel,” Nouv. Rev. Opt. 5, 231–236 (1974).
[CrossRef]

Opt. Eng.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).

Opt. Laser Technol.

T. Henderson, H. Rieger, “Wavelength stabilization system for a pulsed or cw laser,” Opt. Laser Technol. 18, 187–189 (1986).
[CrossRef]

Rev. Phys. Appl.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, “Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer,” Rev. Phys. Appl. 16, 353–358 (1981).
[CrossRef]

Rev. Sci. Instrum.

G. K. Schwemmer, M. Dombroski, C. L. Laurence, J. Milrod, H. Walden, R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Other

P. L. Cross, N. P. Barnes, E. D. Filer, “A software system for laser design and analysis,” in Solid-State Lasers.G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 2–13 (1990).

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1986), Chap. 4.

R. C. Sam, “Alexandrite lasers,” in Handbook of Solid-State Lasers, P. K. Cheo, ed. (Dekker, New York, 1989), pp. 349–452.

Built by Allied Military Laser Products, Westlake Village, Calif., under NASA contract NAS1-18051.

E. V. Browell, “Remote sensing of tropospheric gases and aerosols with an airborne DIAL system,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds., Vol. 39 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1983), pp. 138–147.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL water vapor and aerosols measurements over the gulf stream,” in Twelfth International Laser Radar Conference, G. Mégie, ed. (Centre National de la Recherche Scientifique, Paris, 1984), pp. 13–17.

C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A meteorological mobile DIAL system: concepts and design,” in Thirteenth International Laser Radar Conference, NASA Conference Publ. 2431 (NASA, Washington, D.C., 1986), pp. 61–64.

J. Bosenberg, “A DIAL system for high resolution water vapor measurements in the troposphere,” in Laser and Optical Remote Sensing Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 22–25.

G. Ehret, W. Renger, “Atmospheric aerosol and humidity profiling using an airborne DIAL system in the near IR,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 586–589.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculated single-pass transmission of the two Fabry–Perot étalons ( = 6.5) and the birefringent filter: (a) individual transmissions, (b) combined transmission. The corresponding values of n 2 are shown for one FSR.

Fig. 2
Fig. 2

Calculated single-pass transmission of the five-plate birefringent filter for a tuning angle corresponding to a peak maximum at 728 nm.

Fig. 3
Fig. 3

Single-pass transmission for the parasitic peaks corresponding to n 2 = 6 and n 2 = 7 versus the FSR ratio of the two étalons. For each value of , n 2 = 0 corresponds to a total overlap of the respective peaks of each étalon.

Fig. 4
Fig. 4

(a) Single-pass transmission ratio of parasitic peaks (corresponding to n 2 = 6 and n 2 = 7) over main peak (corresponding to n 2 = 0) versus deviation δ from . The calculation has been carried out for three different initial values of . (b) Maximum ratio drift δ max. permissible without mode hop versus the initial ratio deviation Δ from the half-integer value of (i.e., 6.5). Δ max is converted to the corresponding wavelength drift on the right axis.

Fig. 5
Fig. 5

Simultaneous measurement of the transmissions of the two Fabry–Perot étalons with a tunable cw dye laser. The lower trace is the reference Fabry–Perot transmission curve (FSR = 0.016 cm−1).

Fig. 6
Fig. 6

Experimental apparatus used to assess the pulsed laser spectral characteristics: M’s, mirrors; D’s, detectors; BS, beam splitter.

Fig. 7
Fig. 7

Ratio of the measured to calculated cross sections for two different molecular species versus the molecular absorption line-width (cm−1). The corresponding ratio of the absorption to laser linewidth is reported on the upper axis.

Fig. 8
Fig. 8

Active stabilization of the optical thicknesses of the alexandrite laser intracavity étalon, using an external He–Ne laser as a wavelength reference: A/D, analog-to-digital; D’s, detectors; BRT, birefringent tuner; P’s, prisms; M’s, mirrors; BS, beam splitter.

Fig. 9
Fig. 9

Absorption cross-section variations versus time. The corresponding wavelength drift is reported on the right axis.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

δ λ = λ 2 π n t cos ( θ ) arcsin [ 1 - R 2 R ( 2 1 / 2 q - 1 ) 1 / 2 ] ,
P n P m = ( T n T m ) 2 q ,
SMSR = - 20 q log ( T n T o ) .
T = m - 1 m - cos ( φ 1 ) m - 1 m - cos ( φ 2 )             with             m = 1 + R 2 2 R .
T n 2 = m - 1 m - cos [ - 2 π + ( 2 π n 2 N 1 / N 2 ) ] .
T n 2 T o = m - cos [ 2 π k o / ( R + δ R ) ] m - cos [ 2 π k n / ( R + δ R ) ] ,
δ t = R - 6.5 2 Δ σ 1 ,
k λ = 2 n t cos ( θ ) ,
δ λ = λ [ δ n n + δ t t - tan ( θ ) δ θ ] ,
δ λ = λ [ 1 n air ( n air T δ T + n air P δ P + n air H δ H ) + 1 t ( t T δ T + δ t var ) - tan ( ϕ ) δ ϕ var ] .
( n air T ) P = 760 = ( n o - 1 ) 3.8753 × 10 - 3 ( 1 + 0.003661 T ) - 2 ,
( n air P ) T = 15 = ( n o - 1 ) ( 1.3149 × 10 - 3 + 1.626 × 10 - 9 P ) ,
δ λ = λ [ 1 n n T δ T + 1 t t T δ T - 1 n tan ( n air n ϕ ) × ( ϕ n air T δ T + ϕ n air P δ P + ϕ n air H δ H + n air δ ϕ var ) ] .
δ λ = λ t t V δ V ,
δ λ lc = γ λ 2 [ ln ( R o / R bas ) ln ( R / R bas ) - 1 ] 1 / 2 ,
Δ σ σ = 1 τ ln ( 1 + Δ T T ) 1 τ Δ T T ,
Δ λ lc λ 2 γ ( σ o σ o - Δ σ - 1 ) 1 / 2 .

Metrics