Abstract

We present a simple method of frequency stabilization of a laser with two orthogonal modes that uses the effects of anomalous dispersion at the active line. The result of this effect is that the frequency difference between oscillation modes varies during the frequency tuning along the Doppler line of the transition and has its minimum or maximum when the modes are symmetrically placed around the central part of the gain curve. We applied the semiclassical approach to describe the laser, and we established the rules for laser parameters to obtain the most convenient conditions for stabilization. We stabilized the thermally compensated experimental laser tube and reached frequency stabilities of 3 × 10−9 and 3 × 10−10 for integrating times of 1 and 134 s, respectively.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lenstra, “On the theory of polarization effects in gas lasers,” Phys. Rep. 59, 299–373 (1980).
    [CrossRef]
  2. W. R. Bennett, The Physics of Gas Lasers (Gordon & Breach, New York, 1977), Chap. 2, pp. 105–107, 112–118, 140–141.
  3. U. Brand, F. Mensing, J. Helmcke, “Polarization properties and frequency stabilization of an internal mirror He–Ne laser emitting at 543.5 nm wavelength,” Appl. Phys. B 48, 343–350 (1989).
    [CrossRef]
  4. C. L. Pan, P. Y. Jean, “Improved performance of an internal-mirror He–Ne laser (λ = 633 nm) stabilized by the total power method,” Jpn. J. Appl. Phys. 24, 1384–1385 (1987).
    [CrossRef]
  5. J. T. Shy, C. R. Yang, “Two-mode frequency stabilization of a 543-nm He–Ne laser using current feedback,” Appl. Opt. 28, 4977–4978 (1989).
    [CrossRef] [PubMed]
  6. P. Y. Chien, C. L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 64, 933–935 (1991).
    [CrossRef]
  7. B. Ståhlberg, “Improved frequency stability of two-mode He–Ne lasers in varying temperature environment,” Phys. Scr. 33, 229–232 (1986).
    [CrossRef]
  8. S. J. Bennett, R. E. Ward, D. C. Wilson, “Comments on: frequency stabilization of the internal mirror He–Ne lasers,” Appl. Opt. 12, 1406 (1973).
    [CrossRef] [PubMed]
  9. S. K. Gordon, S. F. Jacobs, “Modification of inexpensive multimode lasers to produce a stabilized single frequency beam,” Appl. Opt. 13, 231 (1974).
    [CrossRef] [PubMed]
  10. T. Fellman, P. Jungner, B. Ståhlberg, “Stabilization of a green He–Ne laser,” Appl. Opt. 26, 2705–2706 (1987).
    [CrossRef] [PubMed]
  11. K. Seta, S. Iwasaki, “Frequency stabilization of a He–Ne laser using a thin film heater coated on the laser tube,” Opt. Commun. 55, 367–369 (1985).
    [CrossRef]
  12. T. Yoshino, “Frequency stabilization of internal-mirror He–Ne (λ = 633 nm) lasers using the polarization properties,” Jpn. J. Appl. Phys. 19, 2181–2185 (1980).
    [CrossRef]
  13. P. E. Ciddor, R. M. Duffy, “Two-mode frequency-stabilized He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
    [CrossRef]
  14. A. N. Vlasov, V. A. Perebyakin, C. Yu. Polyakov, V. E. Privalov, “Long term stability and reproducibility of the internal-mirror He–Ne laser frequency,” Kvantovaya Elektron. (Moscow) 13, 320–325 (1986).
  15. J. N. Desai, T. Chandrasekhar, R. Madvahan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
    [CrossRef]
  16. R. Balhorn, H. Kunzmann, F. Lebowsky, “Frequency stabilization of internal-mirror helium–neon lasers,” Appl. Opt. 11, 742–744 (1972).
    [CrossRef] [PubMed]
  17. A. Sasaki, T. Hayashi, “Amplitude and frequency stabilization of an internal-mirror He–Ne laser,” Jpn. J. Appl. Phys. 21, 1455–1460 (1982).
    [CrossRef]
  18. A. Sasaki, “A simple method for single-frequency operation and amplitude- and frequency-stabilization of an internal-mirror He–Ne laser.” Jpn. J. Appl. Phys. 22, 1538–1542 (1983).
    [CrossRef]
  19. A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous output- and frequency operation of an internal-mirror He–Ne laser by controlling the discharge current,” Jpn. J. Appl. Phys. 23, 593–599 (1984).
    [CrossRef]
  20. A. Sasaki, K. Wakabayashi, S. I. Masuda, “Stabilization of single frequency internal mirror He–Ne lasers,” Appl. Opt. 28, 1608–1609 (1989).
    [CrossRef] [PubMed]
  21. C. L. Pan, C. C. Kuo, T Hsieh, T. F. Lei, “Sensitivity of frequency stability of two-mode internal-mirror He–Ne lasers to misalignment of polarizing optics,” Jpn. J. Appl. Phys. 24, 883–884(1985).
    [CrossRef]
  22. T. Yoshino, K. Kurosawa, “A new method for the intensity stabilization of He–Ne lasers,” Jpn. J. Appl. Phys. 21, 555–556 (1982).
    [CrossRef]
  23. C. L. Pan, P. Y. Jean, “Simultaneous output power and frequency stabilization of a Zeeman He–Ne laser,” Appl. Opt. 25, 2126–2129 (1986).
    [CrossRef] [PubMed]
  24. N. Mio, K. Tsubono, “Frequency modulation method for a He–Ne laser using the mechanical resonance of the laser cavity,” Jpn. J. Appl. Phys. 29, 883–884 (1990).
    [CrossRef]
  25. W. Holzapfel, W. Luxem, W. Settgast, “Stabilization of single frequency internal mirror He–Ne lasers: comment,” Appl. Opt. 29, 3877–3878 (1990).
    [CrossRef] [PubMed]
  26. M. Oger, A. Daudé, A. Le Floch, “Frequency stability measurement on magnetic Lamb dip-stabilized lasers.” J. Phys. E 22, 618–623 (1989).
    [CrossRef]
  27. T. Baer, F. V. Kowalski, J. L. Hall, “Frequency stabilization of a 0.633 μm He–Ne longitudinal Zeeman laser,” Appl. Opt. 19, 3173–3177 (1980).
    [CrossRef] [PubMed]
  28. W. R. C. Rowley, “The performance of a longitudinal Zeeman-stabilised He–Ne laser (633 nm) with thermal modulation and control,” Meas. Sci. Technol. 1, 348–351 (1990).
    [CrossRef]
  29. J. B. Ferguson, R. H. Morris, “Single-mode collapse in 6328-Å He–Ne lasers,” Appl. Opt. 17, 2924–2929 (1978).
    [CrossRef] [PubMed]
  30. R. H. Morris, J. B. Ferguson, J. S. Warniak, “Frequency stabilization of internal mirror He–Ne lasers in a transverse magnetic field,” Appl. Opt. 14, 2808 (1975).
    [CrossRef] [PubMed]
  31. N. Umeda, M. Tsukiji, H. Takasaki, “Stabilized 3He–20Ne transverse Zeeman laser,” Appl. Opt. 19, 442–450 (1980).
    [CrossRef] [PubMed]
  32. B. Schlemmer, “New method of frequency stabilization for Doppler-broadened gas lasers using the anomalous dispersion effect,” Electron. Lett. 24, 864–865 (1988).
    [CrossRef]
  33. A. Sasaki, T. Okada, J. Kawai, H. Aoyama, “Frequency stabilization of an internal-mirror He–Ne laser using axial-mode beat,” Appl. Phys. Lett. 61, 1151–1153 (1992).
    [CrossRef]
  34. H. Ogasawara, J. Nishimura, “Frequency stabilization of internal-mirror He–Ne lasers by a flowing-water method,” Appl. Opt. 21, 1156–1157 (1982).
    [CrossRef] [PubMed]
  35. H. Ogasawara, J. Nishimura, “Frequency stabilization of internal-mirror He–Ne lasers,” Appl. Opt. 22, 655–657 (1983).
    [CrossRef] [PubMed]
  36. A. Sasaki, S. I. Masuda, “Frequency stabilization of He–Ne laser using lateral stress,” Appl. Opt. 30, 1447–1449 (1991).
    [CrossRef] [PubMed]
  37. W. R. Bennett, The Physics of Gas Lasers (Gordon & Breach, New York, 1977), Chap. 2, pp. 90–94, 101–104, 119–120, 140–141.
  38. F. Bretenaker, A. Le Floch, “Specific lenslike effects and resonant diffraction losses in two-isotope gas lasers,” Phys. Rev. A 42, 5561–5572 (1990).
    [CrossRef] [PubMed]
  39. L. W. Casperson, “Oscillation frequency in high-gain lasers,” Phys. Rev. A 42, 6721–6731 (1990).
    [CrossRef] [PubMed]
  40. L. F. Vitushkin, Yu. G. Zakharenko, M. Z. Smirnov, “A modulation method for reducing long-term drifts of the He–Ne laser radiation frequency (λ = 0.63 μm) under stimulated emission of two orthogonally polarized electromagnetic waves,” Kvantovaya Electron. (Moscow) 17, 643–647 (1990).
  41. V. Stert, R. Fischer, “Doppler-free polarization spectroscopy using linear polarized light,” Appl. Phys. 17, 151–154 (1974).
    [CrossRef]
  42. M. Sargent, “Polarized field saturation spectroscopy,” Phys. Rev. A 14, 524–527 (1976).
    [CrossRef]
  43. F. Petrů, B. Popela, Z. Veselá, H. Darnedde, J. Helmcke, “Intercomparison of I2-stabilized He–Ne lasers (λ = 633 nm) of the Institute of Scientific Instruments, CSSR, and the Physikalisch-Technische Bundesanstalt, FRG,” Metrologica 27, 19–23 (1990).
    [CrossRef]
  44. J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
    [CrossRef]
  45. F. Petrů, B. Popela, Z. Veselá, “Iodine-stabilized He–Ne lasers at λ = 633 nm of a compact construction,” Metrologica 29, 301–307 (1992).
    [CrossRef]
  46. F. Petrů, B. Popela, Z. Veselá, “Design and performance of compact iodine stabilized He–Ne lasers at λ = 633 nm with a short optical resonator,” Meas. Sci. Technol. 4, 506–512 (1993).
    [CrossRef]

1993

F. Petrů, B. Popela, Z. Veselá, “Design and performance of compact iodine stabilized He–Ne lasers at λ = 633 nm with a short optical resonator,” Meas. Sci. Technol. 4, 506–512 (1993).
[CrossRef]

1992

A. Sasaki, T. Okada, J. Kawai, H. Aoyama, “Frequency stabilization of an internal-mirror He–Ne laser using axial-mode beat,” Appl. Phys. Lett. 61, 1151–1153 (1992).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, “Iodine-stabilized He–Ne lasers at λ = 633 nm of a compact construction,” Metrologica 29, 301–307 (1992).
[CrossRef]

1991

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

P. Y. Chien, C. L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 64, 933–935 (1991).
[CrossRef]

A. Sasaki, S. I. Masuda, “Frequency stabilization of He–Ne laser using lateral stress,” Appl. Opt. 30, 1447–1449 (1991).
[CrossRef] [PubMed]

1990

W. Holzapfel, W. Luxem, W. Settgast, “Stabilization of single frequency internal mirror He–Ne lasers: comment,” Appl. Opt. 29, 3877–3878 (1990).
[CrossRef] [PubMed]

N. Mio, K. Tsubono, “Frequency modulation method for a He–Ne laser using the mechanical resonance of the laser cavity,” Jpn. J. Appl. Phys. 29, 883–884 (1990).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, H. Darnedde, J. Helmcke, “Intercomparison of I2-stabilized He–Ne lasers (λ = 633 nm) of the Institute of Scientific Instruments, CSSR, and the Physikalisch-Technische Bundesanstalt, FRG,” Metrologica 27, 19–23 (1990).
[CrossRef]

W. R. C. Rowley, “The performance of a longitudinal Zeeman-stabilised He–Ne laser (633 nm) with thermal modulation and control,” Meas. Sci. Technol. 1, 348–351 (1990).
[CrossRef]

F. Bretenaker, A. Le Floch, “Specific lenslike effects and resonant diffraction losses in two-isotope gas lasers,” Phys. Rev. A 42, 5561–5572 (1990).
[CrossRef] [PubMed]

L. W. Casperson, “Oscillation frequency in high-gain lasers,” Phys. Rev. A 42, 6721–6731 (1990).
[CrossRef] [PubMed]

L. F. Vitushkin, Yu. G. Zakharenko, M. Z. Smirnov, “A modulation method for reducing long-term drifts of the He–Ne laser radiation frequency (λ = 0.63 μm) under stimulated emission of two orthogonally polarized electromagnetic waves,” Kvantovaya Electron. (Moscow) 17, 643–647 (1990).

1989

M. Oger, A. Daudé, A. Le Floch, “Frequency stability measurement on magnetic Lamb dip-stabilized lasers.” J. Phys. E 22, 618–623 (1989).
[CrossRef]

U. Brand, F. Mensing, J. Helmcke, “Polarization properties and frequency stabilization of an internal mirror He–Ne laser emitting at 543.5 nm wavelength,” Appl. Phys. B 48, 343–350 (1989).
[CrossRef]

A. Sasaki, K. Wakabayashi, S. I. Masuda, “Stabilization of single frequency internal mirror He–Ne lasers,” Appl. Opt. 28, 1608–1609 (1989).
[CrossRef] [PubMed]

J. T. Shy, C. R. Yang, “Two-mode frequency stabilization of a 543-nm He–Ne laser using current feedback,” Appl. Opt. 28, 4977–4978 (1989).
[CrossRef] [PubMed]

1988

B. Schlemmer, “New method of frequency stabilization for Doppler-broadened gas lasers using the anomalous dispersion effect,” Electron. Lett. 24, 864–865 (1988).
[CrossRef]

1987

C. L. Pan, P. Y. Jean, “Improved performance of an internal-mirror He–Ne laser (λ = 633 nm) stabilized by the total power method,” Jpn. J. Appl. Phys. 24, 1384–1385 (1987).
[CrossRef]

T. Fellman, P. Jungner, B. Ståhlberg, “Stabilization of a green He–Ne laser,” Appl. Opt. 26, 2705–2706 (1987).
[CrossRef] [PubMed]

1986

C. L. Pan, P. Y. Jean, “Simultaneous output power and frequency stabilization of a Zeeman He–Ne laser,” Appl. Opt. 25, 2126–2129 (1986).
[CrossRef] [PubMed]

B. Ståhlberg, “Improved frequency stability of two-mode He–Ne lasers in varying temperature environment,” Phys. Scr. 33, 229–232 (1986).
[CrossRef]

A. N. Vlasov, V. A. Perebyakin, C. Yu. Polyakov, V. E. Privalov, “Long term stability and reproducibility of the internal-mirror He–Ne laser frequency,” Kvantovaya Elektron. (Moscow) 13, 320–325 (1986).

1985

C. L. Pan, C. C. Kuo, T Hsieh, T. F. Lei, “Sensitivity of frequency stability of two-mode internal-mirror He–Ne lasers to misalignment of polarizing optics,” Jpn. J. Appl. Phys. 24, 883–884(1985).
[CrossRef]

K. Seta, S. Iwasaki, “Frequency stabilization of a He–Ne laser using a thin film heater coated on the laser tube,” Opt. Commun. 55, 367–369 (1985).
[CrossRef]

1984

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous output- and frequency operation of an internal-mirror He–Ne laser by controlling the discharge current,” Jpn. J. Appl. Phys. 23, 593–599 (1984).
[CrossRef]

1983

P. E. Ciddor, R. M. Duffy, “Two-mode frequency-stabilized He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

A. Sasaki, “A simple method for single-frequency operation and amplitude- and frequency-stabilization of an internal-mirror He–Ne laser.” Jpn. J. Appl. Phys. 22, 1538–1542 (1983).
[CrossRef]

H. Ogasawara, J. Nishimura, “Frequency stabilization of internal-mirror He–Ne lasers,” Appl. Opt. 22, 655–657 (1983).
[CrossRef] [PubMed]

1982

H. Ogasawara, J. Nishimura, “Frequency stabilization of internal-mirror He–Ne lasers by a flowing-water method,” Appl. Opt. 21, 1156–1157 (1982).
[CrossRef] [PubMed]

A. Sasaki, T. Hayashi, “Amplitude and frequency stabilization of an internal-mirror He–Ne laser,” Jpn. J. Appl. Phys. 21, 1455–1460 (1982).
[CrossRef]

T. Yoshino, K. Kurosawa, “A new method for the intensity stabilization of He–Ne lasers,” Jpn. J. Appl. Phys. 21, 555–556 (1982).
[CrossRef]

1980

D. Lenstra, “On the theory of polarization effects in gas lasers,” Phys. Rep. 59, 299–373 (1980).
[CrossRef]

T. Yoshino, “Frequency stabilization of internal-mirror He–Ne (λ = 633 nm) lasers using the polarization properties,” Jpn. J. Appl. Phys. 19, 2181–2185 (1980).
[CrossRef]

N. Umeda, M. Tsukiji, H. Takasaki, “Stabilized 3He–20Ne transverse Zeeman laser,” Appl. Opt. 19, 442–450 (1980).
[CrossRef] [PubMed]

T. Baer, F. V. Kowalski, J. L. Hall, “Frequency stabilization of a 0.633 μm He–Ne longitudinal Zeeman laser,” Appl. Opt. 19, 3173–3177 (1980).
[CrossRef] [PubMed]

1979

J. N. Desai, T. Chandrasekhar, R. Madvahan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[CrossRef]

1978

1976

M. Sargent, “Polarized field saturation spectroscopy,” Phys. Rev. A 14, 524–527 (1976).
[CrossRef]

1975

1974

V. Stert, R. Fischer, “Doppler-free polarization spectroscopy using linear polarized light,” Appl. Phys. 17, 151–154 (1974).
[CrossRef]

S. K. Gordon, S. F. Jacobs, “Modification of inexpensive multimode lasers to produce a stabilized single frequency beam,” Appl. Opt. 13, 231 (1974).
[CrossRef] [PubMed]

1973

1972

Aoyama, H.

A. Sasaki, T. Okada, J. Kawai, H. Aoyama, “Frequency stabilization of an internal-mirror He–Ne laser using axial-mode beat,” Appl. Phys. Lett. 61, 1151–1153 (1992).
[CrossRef]

Baer, T.

Balhorn, R.

Banreti, E.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Bennett, S. J.

Bennett, W. R.

W. R. Bennett, The Physics of Gas Lasers (Gordon & Breach, New York, 1977), Chap. 2, pp. 105–107, 112–118, 140–141.

W. R. Bennett, The Physics of Gas Lasers (Gordon & Breach, New York, 1977), Chap. 2, pp. 90–94, 101–104, 119–120, 140–141.

Blabla, J.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Brand, U.

U. Brand, F. Mensing, J. Helmcke, “Polarization properties and frequency stabilization of an internal mirror He–Ne laser emitting at 543.5 nm wavelength,” Appl. Phys. B 48, 343–350 (1989).
[CrossRef]

Bretenaker, F.

F. Bretenaker, A. Le Floch, “Specific lenslike effects and resonant diffraction losses in two-isotope gas lasers,” Phys. Rev. A 42, 5561–5572 (1990).
[CrossRef] [PubMed]

Casperson, L. W.

L. W. Casperson, “Oscillation frequency in high-gain lasers,” Phys. Rev. A 42, 6721–6731 (1990).
[CrossRef] [PubMed]

Chandrasekhar, T.

J. N. Desai, T. Chandrasekhar, R. Madvahan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[CrossRef]

Chartier, J.-M.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Chien, P. Y.

P. Y. Chien, C. L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 64, 933–935 (1991).
[CrossRef]

Ciddor, P. E.

P. E. Ciddor, R. M. Duffy, “Two-mode frequency-stabilized He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

Darnedde, H.

F. Petrů, B. Popela, Z. Veselá, H. Darnedde, J. Helmcke, “Intercomparison of I2-stabilized He–Ne lasers (λ = 633 nm) of the Institute of Scientific Instruments, CSSR, and the Physikalisch-Technische Bundesanstalt, FRG,” Metrologica 27, 19–23 (1990).
[CrossRef]

Daudé, A.

M. Oger, A. Daudé, A. Le Floch, “Frequency stability measurement on magnetic Lamb dip-stabilized lasers.” J. Phys. E 22, 618–623 (1989).
[CrossRef]

Desai, J. N.

J. N. Desai, T. Chandrasekhar, R. Madvahan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[CrossRef]

Duffy, R. M.

P. E. Ciddor, R. M. Duffy, “Two-mode frequency-stabilized He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

Fellman, T.

Ferguson, J. B.

Fischer, R.

V. Stert, R. Fischer, “Doppler-free polarization spectroscopy using linear polarized light,” Appl. Phys. 17, 151–154 (1974).
[CrossRef]

Gata, R.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Gordon, S. K.

Hall, J. L.

Hayashi, T.

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous output- and frequency operation of an internal-mirror He–Ne laser by controlling the discharge current,” Jpn. J. Appl. Phys. 23, 593–599 (1984).
[CrossRef]

A. Sasaki, T. Hayashi, “Amplitude and frequency stabilization of an internal-mirror He–Ne laser,” Jpn. J. Appl. Phys. 21, 1455–1460 (1982).
[CrossRef]

Helmcke, J.

F. Petrů, B. Popela, Z. Veselá, H. Darnedde, J. Helmcke, “Intercomparison of I2-stabilized He–Ne lasers (λ = 633 nm) of the Institute of Scientific Instruments, CSSR, and the Physikalisch-Technische Bundesanstalt, FRG,” Metrologica 27, 19–23 (1990).
[CrossRef]

U. Brand, F. Mensing, J. Helmcke, “Polarization properties and frequency stabilization of an internal mirror He–Ne laser emitting at 543.5 nm wavelength,” Appl. Phys. B 48, 343–350 (1989).
[CrossRef]

Holzapfel, W.

Hsieh, T

C. L. Pan, C. C. Kuo, T Hsieh, T. F. Lei, “Sensitivity of frequency stability of two-mode internal-mirror He–Ne lasers to misalignment of polarizing optics,” Jpn. J. Appl. Phys. 24, 883–884(1985).
[CrossRef]

Iwasaki, S.

K. Seta, S. Iwasaki, “Frequency stabilization of a He–Ne laser using a thin film heater coated on the laser tube,” Opt. Commun. 55, 367–369 (1985).
[CrossRef]

Jacobs, S. F.

Jean, P. Y.

C. L. Pan, P. Y. Jean, “Improved performance of an internal-mirror He–Ne laser (λ = 633 nm) stabilized by the total power method,” Jpn. J. Appl. Phys. 24, 1384–1385 (1987).
[CrossRef]

C. L. Pan, P. Y. Jean, “Simultaneous output power and frequency stabilization of a Zeeman He–Ne laser,” Appl. Opt. 25, 2126–2129 (1986).
[CrossRef] [PubMed]

Jungner, P.

Kawai, J.

A. Sasaki, T. Okada, J. Kawai, H. Aoyama, “Frequency stabilization of an internal-mirror He–Ne laser using axial-mode beat,” Appl. Phys. Lett. 61, 1151–1153 (1992).
[CrossRef]

Kowalski, F. V.

Kunzmann, H.

Kuo, C. C.

C. L. Pan, C. C. Kuo, T Hsieh, T. F. Lei, “Sensitivity of frequency stability of two-mode internal-mirror He–Ne lasers to misalignment of polarizing optics,” Jpn. J. Appl. Phys. 24, 883–884(1985).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, “A new method for the intensity stabilization of He–Ne lasers,” Jpn. J. Appl. Phys. 21, 555–556 (1982).
[CrossRef]

Le Floch, A.

F. Bretenaker, A. Le Floch, “Specific lenslike effects and resonant diffraction losses in two-isotope gas lasers,” Phys. Rev. A 42, 5561–5572 (1990).
[CrossRef] [PubMed]

M. Oger, A. Daudé, A. Le Floch, “Frequency stability measurement on magnetic Lamb dip-stabilized lasers.” J. Phys. E 22, 618–623 (1989).
[CrossRef]

Lebowsky, F.

Lei, T. F.

C. L. Pan, C. C. Kuo, T Hsieh, T. F. Lei, “Sensitivity of frequency stability of two-mode internal-mirror He–Ne lasers to misalignment of polarizing optics,” Jpn. J. Appl. Phys. 24, 883–884(1985).
[CrossRef]

Lenstra, D.

D. Lenstra, “On the theory of polarization effects in gas lasers,” Phys. Rep. 59, 299–373 (1980).
[CrossRef]

Luxem, W.

Madvahan, R.

J. N. Desai, T. Chandrasekhar, R. Madvahan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[CrossRef]

Masuda, S. I.

Mensing, F.

U. Brand, F. Mensing, J. Helmcke, “Polarization properties and frequency stabilization of an internal mirror He–Ne laser emitting at 543.5 nm wavelength,” Appl. Phys. B 48, 343–350 (1989).
[CrossRef]

Mio, N.

N. Mio, K. Tsubono, “Frequency modulation method for a He–Ne laser using the mechanical resonance of the laser cavity,” Jpn. J. Appl. Phys. 29, 883–884 (1990).
[CrossRef]

Morris, R. H.

Navrátil, V.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Nishimura, J.

Ogasawara, H.

Oger, M.

M. Oger, A. Daudé, A. Le Floch, “Frequency stability measurement on magnetic Lamb dip-stabilized lasers.” J. Phys. E 22, 618–623 (1989).
[CrossRef]

Okada, T.

A. Sasaki, T. Okada, J. Kawai, H. Aoyama, “Frequency stabilization of an internal-mirror He–Ne laser using axial-mode beat,” Appl. Phys. Lett. 61, 1151–1153 (1992).
[CrossRef]

Pan, C. L.

P. Y. Chien, C. L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 64, 933–935 (1991).
[CrossRef]

C. L. Pan, P. Y. Jean, “Improved performance of an internal-mirror He–Ne laser (λ = 633 nm) stabilized by the total power method,” Jpn. J. Appl. Phys. 24, 1384–1385 (1987).
[CrossRef]

C. L. Pan, P. Y. Jean, “Simultaneous output power and frequency stabilization of a Zeeman He–Ne laser,” Appl. Opt. 25, 2126–2129 (1986).
[CrossRef] [PubMed]

C. L. Pan, C. C. Kuo, T Hsieh, T. F. Lei, “Sensitivity of frequency stability of two-mode internal-mirror He–Ne lasers to misalignment of polarizing optics,” Jpn. J. Appl. Phys. 24, 883–884(1985).
[CrossRef]

Perebyakin, V. A.

A. N. Vlasov, V. A. Perebyakin, C. Yu. Polyakov, V. E. Privalov, “Long term stability and reproducibility of the internal-mirror He–Ne laser frequency,” Kvantovaya Elektron. (Moscow) 13, 320–325 (1986).

Petru, F.

F. Petrů, B. Popela, Z. Veselá, “Design and performance of compact iodine stabilized He–Ne lasers at λ = 633 nm with a short optical resonator,” Meas. Sci. Technol. 4, 506–512 (1993).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, “Iodine-stabilized He–Ne lasers at λ = 633 nm of a compact construction,” Metrologica 29, 301–307 (1992).
[CrossRef]

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, H. Darnedde, J. Helmcke, “Intercomparison of I2-stabilized He–Ne lasers (λ = 633 nm) of the Institute of Scientific Instruments, CSSR, and the Physikalisch-Technische Bundesanstalt, FRG,” Metrologica 27, 19–23 (1990).
[CrossRef]

Polyakov, C. Yu.

A. N. Vlasov, V. A. Perebyakin, C. Yu. Polyakov, V. E. Privalov, “Long term stability and reproducibility of the internal-mirror He–Ne laser frequency,” Kvantovaya Elektron. (Moscow) 13, 320–325 (1986).

Popela, B.

F. Petrů, B. Popela, Z. Veselá, “Design and performance of compact iodine stabilized He–Ne lasers at λ = 633 nm with a short optical resonator,” Meas. Sci. Technol. 4, 506–512 (1993).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, “Iodine-stabilized He–Ne lasers at λ = 633 nm of a compact construction,” Metrologica 29, 301–307 (1992).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, H. Darnedde, J. Helmcke, “Intercomparison of I2-stabilized He–Ne lasers (λ = 633 nm) of the Institute of Scientific Instruments, CSSR, and the Physikalisch-Technische Bundesanstalt, FRG,” Metrologica 27, 19–23 (1990).
[CrossRef]

Privalov, V. E.

A. N. Vlasov, V. A. Perebyakin, C. Yu. Polyakov, V. E. Privalov, “Long term stability and reproducibility of the internal-mirror He–Ne laser frequency,” Kvantovaya Elektron. (Moscow) 13, 320–325 (1986).

Pucek, B.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Robertsson, L.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Rowley, W. R. C.

W. R. C. Rowley, “The performance of a longitudinal Zeeman-stabilised He–Ne laser (633 nm) with thermal modulation and control,” Meas. Sci. Technol. 1, 348–351 (1990).
[CrossRef]

Sargent, M.

M. Sargent, “Polarized field saturation spectroscopy,” Phys. Rev. A 14, 524–527 (1976).
[CrossRef]

Sasaki, A.

A. Sasaki, T. Okada, J. Kawai, H. Aoyama, “Frequency stabilization of an internal-mirror He–Ne laser using axial-mode beat,” Appl. Phys. Lett. 61, 1151–1153 (1992).
[CrossRef]

A. Sasaki, S. I. Masuda, “Frequency stabilization of He–Ne laser using lateral stress,” Appl. Opt. 30, 1447–1449 (1991).
[CrossRef] [PubMed]

A. Sasaki, K. Wakabayashi, S. I. Masuda, “Stabilization of single frequency internal mirror He–Ne lasers,” Appl. Opt. 28, 1608–1609 (1989).
[CrossRef] [PubMed]

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous output- and frequency operation of an internal-mirror He–Ne laser by controlling the discharge current,” Jpn. J. Appl. Phys. 23, 593–599 (1984).
[CrossRef]

A. Sasaki, “A simple method for single-frequency operation and amplitude- and frequency-stabilization of an internal-mirror He–Ne laser.” Jpn. J. Appl. Phys. 22, 1538–1542 (1983).
[CrossRef]

A. Sasaki, T. Hayashi, “Amplitude and frequency stabilization of an internal-mirror He–Ne laser,” Jpn. J. Appl. Phys. 21, 1455–1460 (1982).
[CrossRef]

Schlemmer, B.

B. Schlemmer, “New method of frequency stabilization for Doppler-broadened gas lasers using the anomalous dispersion effect,” Electron. Lett. 24, 864–865 (1988).
[CrossRef]

Seta, K.

K. Seta, S. Iwasaki, “Frequency stabilization of a He–Ne laser using a thin film heater coated on the laser tube,” Opt. Commun. 55, 367–369 (1985).
[CrossRef]

Settgast, W.

Shy, J. T.

Smirnov, M. Z.

L. F. Vitushkin, Yu. G. Zakharenko, M. Z. Smirnov, “A modulation method for reducing long-term drifts of the He–Ne laser radiation frequency (λ = 0.63 μm) under stimulated emission of two orthogonally polarized electromagnetic waves,” Kvantovaya Electron. (Moscow) 17, 643–647 (1990).

Smydke, J.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Sommer, M.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Ståhlberg, B.

T. Fellman, P. Jungner, B. Ståhlberg, “Stabilization of a green He–Ne laser,” Appl. Opt. 26, 2705–2706 (1987).
[CrossRef] [PubMed]

B. Ståhlberg, “Improved frequency stability of two-mode He–Ne lasers in varying temperature environment,” Phys. Scr. 33, 229–232 (1986).
[CrossRef]

Stert, V.

V. Stert, R. Fischer, “Doppler-free polarization spectroscopy using linear polarized light,” Appl. Phys. 17, 151–154 (1974).
[CrossRef]

Takasaki, H.

Tomanyiczka, K.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Tschirnick, J.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Tsubono, K.

N. Mio, K. Tsubono, “Frequency modulation method for a He–Ne laser using the mechanical resonance of the laser cavity,” Jpn. J. Appl. Phys. 29, 883–884 (1990).
[CrossRef]

Tsukiji, M.

Umeda, N.

Ushimaru, S.

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous output- and frequency operation of an internal-mirror He–Ne laser by controlling the discharge current,” Jpn. J. Appl. Phys. 23, 593–599 (1984).
[CrossRef]

Veselá, Z.

F. Petrů, B. Popela, Z. Veselá, “Design and performance of compact iodine stabilized He–Ne lasers at λ = 633 nm with a short optical resonator,” Meas. Sci. Technol. 4, 506–512 (1993).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, “Iodine-stabilized He–Ne lasers at λ = 633 nm of a compact construction,” Metrologica 29, 301–307 (1992).
[CrossRef]

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, H. Darnedde, J. Helmcke, “Intercomparison of I2-stabilized He–Ne lasers (λ = 633 nm) of the Institute of Scientific Instruments, CSSR, and the Physikalisch-Technische Bundesanstalt, FRG,” Metrologica 27, 19–23 (1990).
[CrossRef]

Vitushkin, L. F.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

L. F. Vitushkin, Yu. G. Zakharenko, M. Z. Smirnov, “A modulation method for reducing long-term drifts of the He–Ne laser radiation frequency (λ = 0.63 μm) under stimulated emission of two orthogonally polarized electromagnetic waves,” Kvantovaya Electron. (Moscow) 17, 643–647 (1990).

Vlasov, A. N.

A. N. Vlasov, V. A. Perebyakin, C. Yu. Polyakov, V. E. Privalov, “Long term stability and reproducibility of the internal-mirror He–Ne laser frequency,” Kvantovaya Elektron. (Moscow) 13, 320–325 (1986).

Wakabayashi, K.

Ward, R. E.

Warniak, J. S.

Wilson, D. C.

Yang, C. R.

Yoshino, T.

T. Yoshino, K. Kurosawa, “A new method for the intensity stabilization of He–Ne lasers,” Jpn. J. Appl. Phys. 21, 555–556 (1982).
[CrossRef]

T. Yoshino, “Frequency stabilization of internal-mirror He–Ne (λ = 633 nm) lasers using the polarization properties,” Jpn. J. Appl. Phys. 19, 2181–2185 (1980).
[CrossRef]

Zakharenko, Yu. G.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

L. F. Vitushkin, Yu. G. Zakharenko, M. Z. Smirnov, “A modulation method for reducing long-term drifts of the He–Ne laser radiation frequency (λ = 0.63 μm) under stimulated emission of two orthogonally polarized electromagnetic waves,” Kvantovaya Electron. (Moscow) 17, 643–647 (1990).

Zeleny, V.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Ziegler, M.

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Appl. Opt.

R. Balhorn, H. Kunzmann, F. Lebowsky, “Frequency stabilization of internal-mirror helium–neon lasers,” Appl. Opt. 11, 742–744 (1972).
[CrossRef] [PubMed]

S. K. Gordon, S. F. Jacobs, “Modification of inexpensive multimode lasers to produce a stabilized single frequency beam,” Appl. Opt. 13, 231 (1974).
[CrossRef] [PubMed]

J. B. Ferguson, R. H. Morris, “Single-mode collapse in 6328-Å He–Ne lasers,” Appl. Opt. 17, 2924–2929 (1978).
[CrossRef] [PubMed]

N. Umeda, M. Tsukiji, H. Takasaki, “Stabilized 3He–20Ne transverse Zeeman laser,” Appl. Opt. 19, 442–450 (1980).
[CrossRef] [PubMed]

T. Baer, F. V. Kowalski, J. L. Hall, “Frequency stabilization of a 0.633 μm He–Ne longitudinal Zeeman laser,” Appl. Opt. 19, 3173–3177 (1980).
[CrossRef] [PubMed]

H. Ogasawara, J. Nishimura, “Frequency stabilization of internal-mirror He–Ne lasers by a flowing-water method,” Appl. Opt. 21, 1156–1157 (1982).
[CrossRef] [PubMed]

H. Ogasawara, J. Nishimura, “Frequency stabilization of internal-mirror He–Ne lasers,” Appl. Opt. 22, 655–657 (1983).
[CrossRef] [PubMed]

C. L. Pan, P. Y. Jean, “Simultaneous output power and frequency stabilization of a Zeeman He–Ne laser,” Appl. Opt. 25, 2126–2129 (1986).
[CrossRef] [PubMed]

A. Sasaki, K. Wakabayashi, S. I. Masuda, “Stabilization of single frequency internal mirror He–Ne lasers,” Appl. Opt. 28, 1608–1609 (1989).
[CrossRef] [PubMed]

A. Sasaki, S. I. Masuda, “Frequency stabilization of He–Ne laser using lateral stress,” Appl. Opt. 30, 1447–1449 (1991).
[CrossRef] [PubMed]

R. H. Morris, J. B. Ferguson, J. S. Warniak, “Frequency stabilization of internal mirror He–Ne lasers in a transverse magnetic field,” Appl. Opt. 14, 2808 (1975).
[CrossRef] [PubMed]

J. T. Shy, C. R. Yang, “Two-mode frequency stabilization of a 543-nm He–Ne laser using current feedback,” Appl. Opt. 28, 4977–4978 (1989).
[CrossRef] [PubMed]

W. Holzapfel, W. Luxem, W. Settgast, “Stabilization of single frequency internal mirror He–Ne lasers: comment,” Appl. Opt. 29, 3877–3878 (1990).
[CrossRef] [PubMed]

S. J. Bennett, R. E. Ward, D. C. Wilson, “Comments on: frequency stabilization of the internal mirror He–Ne lasers,” Appl. Opt. 12, 1406 (1973).
[CrossRef] [PubMed]

T. Fellman, P. Jungner, B. Ståhlberg, “Stabilization of a green He–Ne laser,” Appl. Opt. 26, 2705–2706 (1987).
[CrossRef] [PubMed]

Appl. Phys.

V. Stert, R. Fischer, “Doppler-free polarization spectroscopy using linear polarized light,” Appl. Phys. 17, 151–154 (1974).
[CrossRef]

Appl. Phys. B

U. Brand, F. Mensing, J. Helmcke, “Polarization properties and frequency stabilization of an internal mirror He–Ne laser emitting at 543.5 nm wavelength,” Appl. Phys. B 48, 343–350 (1989).
[CrossRef]

Appl. Phys. Lett.

A. Sasaki, T. Okada, J. Kawai, H. Aoyama, “Frequency stabilization of an internal-mirror He–Ne laser using axial-mode beat,” Appl. Phys. Lett. 61, 1151–1153 (1992).
[CrossRef]

Electron. Lett.

B. Schlemmer, “New method of frequency stabilization for Doppler-broadened gas lasers using the anomalous dispersion effect,” Electron. Lett. 24, 864–865 (1988).
[CrossRef]

J. Phys. E

P. E. Ciddor, R. M. Duffy, “Two-mode frequency-stabilized He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

J. N. Desai, T. Chandrasekhar, R. Madvahan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[CrossRef]

M. Oger, A. Daudé, A. Le Floch, “Frequency stability measurement on magnetic Lamb dip-stabilized lasers.” J. Phys. E 22, 618–623 (1989).
[CrossRef]

Jpn. J. Appl. Phys.

A. Sasaki, T. Hayashi, “Amplitude and frequency stabilization of an internal-mirror He–Ne laser,” Jpn. J. Appl. Phys. 21, 1455–1460 (1982).
[CrossRef]

A. Sasaki, “A simple method for single-frequency operation and amplitude- and frequency-stabilization of an internal-mirror He–Ne laser.” Jpn. J. Appl. Phys. 22, 1538–1542 (1983).
[CrossRef]

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous output- and frequency operation of an internal-mirror He–Ne laser by controlling the discharge current,” Jpn. J. Appl. Phys. 23, 593–599 (1984).
[CrossRef]

C. L. Pan, C. C. Kuo, T Hsieh, T. F. Lei, “Sensitivity of frequency stability of two-mode internal-mirror He–Ne lasers to misalignment of polarizing optics,” Jpn. J. Appl. Phys. 24, 883–884(1985).
[CrossRef]

T. Yoshino, K. Kurosawa, “A new method for the intensity stabilization of He–Ne lasers,” Jpn. J. Appl. Phys. 21, 555–556 (1982).
[CrossRef]

N. Mio, K. Tsubono, “Frequency modulation method for a He–Ne laser using the mechanical resonance of the laser cavity,” Jpn. J. Appl. Phys. 29, 883–884 (1990).
[CrossRef]

C. L. Pan, P. Y. Jean, “Improved performance of an internal-mirror He–Ne laser (λ = 633 nm) stabilized by the total power method,” Jpn. J. Appl. Phys. 24, 1384–1385 (1987).
[CrossRef]

T. Yoshino, “Frequency stabilization of internal-mirror He–Ne (λ = 633 nm) lasers using the polarization properties,” Jpn. J. Appl. Phys. 19, 2181–2185 (1980).
[CrossRef]

Kvantovaya Electron. (Moscow)

L. F. Vitushkin, Yu. G. Zakharenko, M. Z. Smirnov, “A modulation method for reducing long-term drifts of the He–Ne laser radiation frequency (λ = 0.63 μm) under stimulated emission of two orthogonally polarized electromagnetic waves,” Kvantovaya Electron. (Moscow) 17, 643–647 (1990).

Kvantovaya Elektron. (Moscow)

A. N. Vlasov, V. A. Perebyakin, C. Yu. Polyakov, V. E. Privalov, “Long term stability and reproducibility of the internal-mirror He–Ne laser frequency,” Kvantovaya Elektron. (Moscow) 13, 320–325 (1986).

Meas. Sci. Technol.

W. R. C. Rowley, “The performance of a longitudinal Zeeman-stabilised He–Ne laser (633 nm) with thermal modulation and control,” Meas. Sci. Technol. 1, 348–351 (1990).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, “Design and performance of compact iodine stabilized He–Ne lasers at λ = 633 nm with a short optical resonator,” Meas. Sci. Technol. 4, 506–512 (1993).
[CrossRef]

Metrologia

J.-M. Chartier, L. Robertsson, M. Sommer, J. Tschirnick, V. Navrátil, R. Gata, B. Pucek, J. Blabla, J. Smydke, M. Ziegler, V. Zeleny, F. Petrů, Z. Veselá, K. Tomanyiczka, E. Banreti, Yu. G. Zakharenko, L. F. Vitushkin, “International comparison of iodine-stabilized helium–neon lasers at λ = 633 nm involving seven laboratories,” Metrologia 28, 19–25 (1991).
[CrossRef]

Metrologica

F. Petrů, B. Popela, Z. Veselá, “Iodine-stabilized He–Ne lasers at λ = 633 nm of a compact construction,” Metrologica 29, 301–307 (1992).
[CrossRef]

F. Petrů, B. Popela, Z. Veselá, H. Darnedde, J. Helmcke, “Intercomparison of I2-stabilized He–Ne lasers (λ = 633 nm) of the Institute of Scientific Instruments, CSSR, and the Physikalisch-Technische Bundesanstalt, FRG,” Metrologica 27, 19–23 (1990).
[CrossRef]

Opt. Commun.

K. Seta, S. Iwasaki, “Frequency stabilization of a He–Ne laser using a thin film heater coated on the laser tube,” Opt. Commun. 55, 367–369 (1985).
[CrossRef]

Phys. Rep.

D. Lenstra, “On the theory of polarization effects in gas lasers,” Phys. Rep. 59, 299–373 (1980).
[CrossRef]

Phys. Rev. A

F. Bretenaker, A. Le Floch, “Specific lenslike effects and resonant diffraction losses in two-isotope gas lasers,” Phys. Rev. A 42, 5561–5572 (1990).
[CrossRef] [PubMed]

L. W. Casperson, “Oscillation frequency in high-gain lasers,” Phys. Rev. A 42, 6721–6731 (1990).
[CrossRef] [PubMed]

M. Sargent, “Polarized field saturation spectroscopy,” Phys. Rev. A 14, 524–527 (1976).
[CrossRef]

Phys. Scr.

B. Ståhlberg, “Improved frequency stability of two-mode He–Ne lasers in varying temperature environment,” Phys. Scr. 33, 229–232 (1986).
[CrossRef]

Rev. Sci. Instrum.

P. Y. Chien, C. L. Pan, “A thermal phase-locked loop for frequency stabilization of internal-mirror He–Ne lasers (λ = 0.633 μm),” Rev. Sci. Instrum. 64, 933–935 (1991).
[CrossRef]

Other

W. R. Bennett, The Physics of Gas Lasers (Gordon & Breach, New York, 1977), Chap. 2, pp. 105–107, 112–118, 140–141.

W. R. Bennett, The Physics of Gas Lasers (Gordon & Breach, New York, 1977), Chap. 2, pp. 90–94, 101–104, 119–120, 140–141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Coupling parameter as a function of the ratio of the relaxation rates of the upper and lower levels.

Fig. 2
Fig. 2

Measured data (filled squares) and fitted curve. Fixed parameters: transition j: 1 → 2; η = 1.28; f iodf At = 50 MHz; γ b a = 2.25; found parameters: Δf bc = 617.02 ± 0.03 MHz; γ ab /(2π) = 369.67 ± 0.07 MHz; Γ z = 0.133 ± 0.002 m−1.

Fig. 3
Fig. 3

Transformed beat frequency of two modes as a function of detuning the upper mode from the frequency of the atomic transition for various homogenous full widths. Transition j: 1 → 1; Δf bc = 500 MHz; γ a b = 1; ——■——, η = 1.297, γ ab /(2π) = 100 MHz, slope 550 Hz/MHz; ——▲——, η = 1.294, γ ab /(2π) = 200 MHz, slope 400 Hz/MHz; ——×——, η = 1.298, γ ab /(2π) = 300 MHz, slope 150 Hz/MHz; ——▼——, η = 1.303, γ ab /(2π) = 400 MHz, slope 50 Hz/MHz; ——♦——, η = 1.307, γ ab /(2π) = 500 MHz, slope 20 Hz/MHz.

Fig. 4
Fig. 4

Transformed beat frequency of two modes as a function of detuning the upper mode from the frequency of the atomic transition for various mode spacings. Transition j: 1 → 1; γ ab /(2π) = 400 MHz; γ a b = 1; ——■——, η = 1.12, Δf bc = 300 MHz, slope −15 Hz/MHz; —— ▲——, η = 1.30, Δf bc = 500 MHz, slope 50 Hz/MHz; ——×——, η = 1.61, Δf bc = 700 MHz, slope 200 Hz/MHz; ——▼———, η = 2.10, Δf bc = 900 MHz, slope 400 Hz/MHz; ——♦——, η = 2.89, Δf bc = 1100 MHz, slope 700 Hz/MHz.

Fig. 5
Fig. 5

Transformed beat frequency of two modes as a function of detuning the upper mode from the frequency of the atomic transition for various transitions and relaxation rates of upper and lower levels. Δf bc = 617 MHz; γ ab /(2π) = 370 MHz. For transition j: 2 → 1 ——■——, η = 1.49, γ a b = 1, slope 300 Hz/MHz; ——×——, η = 1.51, γ a b = 1/2, slope 450 Hz/MHz; ——▼——, η = 1.53, γ a b = 1/4, slope 700 Hz/MHz; ——♦——, η = 1.55, γ a b = 1/10, slope 2 Hz/MHz. For transition j: 1 → 1 - - -■- - -, η = 1.46, γ a b = 1, slope 175 Hz/MHz; - —X— -, η = 1.48, γ a b = 1/2, slope 220 Hz/MHz; - - -▼- - -, η = 1.49, γ a b = 1/4, slope 250 Hz/MHz;- - -♦- - -, η = 1.50, γ a b = 1/10, slope 350 Hz/MHz.

Fig. 6
Fig. 6

Outline of the stabilizing servoloop. NS, nonpolarizing beam splitter; P polarizer; L, lens; SI, scanning interferometer; PD, avalanche photodiode; HFA, high-frequency amplifier; COUNT, counter; PC, PC/AT computer; DAC, digital–analog converter; ∑, summator; HVA, high-voltage amplifier; Att, attenuation.

Fig. 7
Fig. 7

Flow chart of the algorithm for stabilization.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η Z 0 ( s n ) / Z 0 ( 0 ) - 1 = η I n Z ( s n , s n ) + η k = 1 k n N I k Z ( s n , s k ) α n k ,
2 Δ ω n / Γ = η Z 0 ( s n ) / Z 0 ( 0 ) - η I n Z ( s n , s n ) - η k = 1 k n N I k Z ( s n , s k ) α n k ,
I n = I n p 2 F 3 ln ( 2 ) / ( 16 F 1 Z 0 ( 0 ) 2 π 2 Δ f D 2 ) ( 1 / γ a + 1 / γ b ) .
Z ( s , s ) = - i [ Z 1 ( s , s ) + Z 1 ( s , - s ) + Z 2 ( s , s ) + Z 2 ( s , - s ) ] , Z 1 ( s , s ) = - Z 0 ( s ) + Z 0 ( s ) s + s + i 2 γ ab , γ ab = γ ab [ ln ( 2 ) ] 1 / 2 / ( 2 π Δ f D ) , Z 2 ( s , s ) = Z 0 ( s ) - Z 0 ( s ) s - s             for s s or Z 0 ( s ) s             for s = s ;
α n k = ( F 2 - F 4 ) γ b + F 4 γ a F 3 ( γ a + γ b ) ,

Metrics