Abstract

We have used telluride glass fibers fabricated in house to measure the evanescent-absorption spectra of water, methanol, ethanol, isopropanol, acetone, ethanoic acid, hexane, and chloroform. Furthermore, detection limits of less than 2 vol. % solute were obtained for mixtures of water and methanol, ethanol, isopropanol, acetone, and ethanoic acid. Techniques to reduce the detection limits are discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tai, H. Tanaka, T. Yoshino, “Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-μm line of a He–Ne laser,” Opt. Lett. 12, 437–439 (1987).
    [CrossRef] [PubMed]
  2. F. L. Dickert, S. K. Schreiner, G. R. Mages, H. Kimmel, “Fiber-optic dipping sensor for organic solvents in waste-water,” Anal. Chem. 61, 2306–2309 (1989).
    [CrossRef]
  3. S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).
  4. J. R. Gannon, “Materials for mid-infrared waveguides,” in Infrared Fibers (0.8–12 μm) I, L. G. DeShazer, C. Kao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.266, 62–68 (1981).
  5. Z. U. Borisova, Glassy Semiconductors (Plenum, New York, 1981), p. 6.
  6. P. Klocek, M. Roth, R. D. Rock, “Chalcogenide glass optical fibers and image bundles: properties and applications,” Opt. Eng. 26, 88–95 (1987).
  7. M. Saito, M. Takizawa, K. Ikegawa, H. Takami, “Optical remote sensing system for hydrocarbon gases using infrared fibers,” J. Appl. Phys. 63, 269–272 (1988).
    [CrossRef]
  8. D. A. C. Compton, S. L. Hill, N. A. Wright, M. A. Druy, J. Piche, W. A. Stevenson, D. W. Vidrine, “In situ FTIR analysis of a composite curing reaction using mid-infrared transmitting optical fiber,” Appl. Spectrosc. 42, 972–979 (1988).
    [CrossRef]
  9. X. H. Zhang, M. V. Duhamel, H. L. Ma, C. Blanchetiere, J. Lucas, “Application of the TeX glass fibers as chemical sensors,” J. Non-Cryst. Solids 161, 327–330 (1993).
    [CrossRef]
  10. J. Heo, M. Rodrigues, S. J. Saggese, G. H. Sigel, “Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers,” Appl. Opt. 30, 3944–3951 (1991).
    [CrossRef] [PubMed]
  11. J. S. Sanghera, V. Q. Nguyen, R. Miklos, I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320–322 (1993).
    [CrossRef]
  12. R. D. Driver, G. M. Leskowitz, L. E. Curtiss, D. E. Moynihan, L. B. Vacha, “The characterization of infrared transmitting fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
    [CrossRef]
  13. J. A. Savage, S. Nielsen, “Preparation of glasses transmitting in the infrared between 8 and 15 microns,” Phys. Chem. Glasses 5, 82–86 (1964).
  14. Provided by Sadtler Research Laboratories, Inc., Philadelphia, Pa.
  15. C. J. Pouchert, The Aldrich Library of FT-IR Spectra (Aldrich Chemical Company, Milwaukee, Wisc., 1981).
  16. M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
    [CrossRef]
  17. J. Lucas, X. H. Zhang, “The tellurium halide glasses,” J. Non-Cryst. Solids 125, 1–16 (1990).
    [CrossRef]

1993 (2)

X. H. Zhang, M. V. Duhamel, H. L. Ma, C. Blanchetiere, J. Lucas, “Application of the TeX glass fibers as chemical sensors,” J. Non-Cryst. Solids 161, 327–330 (1993).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, R. Miklos, I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320–322 (1993).
[CrossRef]

1991 (1)

1990 (2)

R. D. Driver, G. M. Leskowitz, L. E. Curtiss, D. E. Moynihan, L. B. Vacha, “The characterization of infrared transmitting fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

J. Lucas, X. H. Zhang, “The tellurium halide glasses,” J. Non-Cryst. Solids 125, 1–16 (1990).
[CrossRef]

1989 (1)

F. L. Dickert, S. K. Schreiner, G. R. Mages, H. Kimmel, “Fiber-optic dipping sensor for organic solvents in waste-water,” Anal. Chem. 61, 2306–2309 (1989).
[CrossRef]

1988 (3)

M. Saito, M. Takizawa, K. Ikegawa, H. Takami, “Optical remote sensing system for hydrocarbon gases using infrared fibers,” J. Appl. Phys. 63, 269–272 (1988).
[CrossRef]

D. A. C. Compton, S. L. Hill, N. A. Wright, M. A. Druy, J. Piche, W. A. Stevenson, D. W. Vidrine, “In situ FTIR analysis of a composite curing reaction using mid-infrared transmitting optical fiber,” Appl. Spectrosc. 42, 972–979 (1988).
[CrossRef]

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

1987 (2)

H. Tai, H. Tanaka, T. Yoshino, “Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-μm line of a He–Ne laser,” Opt. Lett. 12, 437–439 (1987).
[CrossRef] [PubMed]

P. Klocek, M. Roth, R. D. Rock, “Chalcogenide glass optical fibers and image bundles: properties and applications,” Opt. Eng. 26, 88–95 (1987).

1964 (1)

J. A. Savage, S. Nielsen, “Preparation of glasses transmitting in the infrared between 8 and 15 microns,” Phys. Chem. Glasses 5, 82–86 (1964).

Aggarwal, I. D.

J. S. Sanghera, V. Q. Nguyen, R. Miklos, I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320–322 (1993).
[CrossRef]

Blanchetiere, C.

X. H. Zhang, M. V. Duhamel, H. L. Ma, C. Blanchetiere, J. Lucas, “Application of the TeX glass fibers as chemical sensors,” J. Non-Cryst. Solids 161, 327–330 (1993).
[CrossRef]

Borisova, Z. U.

Z. U. Borisova, Glassy Semiconductors (Plenum, New York, 1981), p. 6.

Burgess, L. W.

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Compton, D. A. C.

Curtiss, L. E.

R. D. Driver, G. M. Leskowitz, L. E. Curtiss, D. E. Moynihan, L. B. Vacha, “The characterization of infrared transmitting fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

DeGrandpre, M. D.

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Dickert, F. L.

F. L. Dickert, S. K. Schreiner, G. R. Mages, H. Kimmel, “Fiber-optic dipping sensor for organic solvents in waste-water,” Anal. Chem. 61, 2306–2309 (1989).
[CrossRef]

Driver, R. D.

R. D. Driver, G. M. Leskowitz, L. E. Curtiss, D. E. Moynihan, L. B. Vacha, “The characterization of infrared transmitting fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Druy, M. A.

Duhamel, M. V.

X. H. Zhang, M. V. Duhamel, H. L. Ma, C. Blanchetiere, J. Lucas, “Application of the TeX glass fibers as chemical sensors,” J. Non-Cryst. Solids 161, 327–330 (1993).
[CrossRef]

Gannon, J. R.

J. R. Gannon, “Materials for mid-infrared waveguides,” in Infrared Fibers (0.8–12 μm) I, L. G. DeShazer, C. Kao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.266, 62–68 (1981).

Heo, J.

Hill, S. L.

Ikegawa, K.

M. Saito, M. Takizawa, K. Ikegawa, H. Takami, “Optical remote sensing system for hydrocarbon gases using infrared fibers,” J. Appl. Phys. 63, 269–272 (1988).
[CrossRef]

Kimmel, H.

F. L. Dickert, S. K. Schreiner, G. R. Mages, H. Kimmel, “Fiber-optic dipping sensor for organic solvents in waste-water,” Anal. Chem. 61, 2306–2309 (1989).
[CrossRef]

Klocek, P.

P. Klocek, M. Roth, R. D. Rock, “Chalcogenide glass optical fibers and image bundles: properties and applications,” Opt. Eng. 26, 88–95 (1987).

Leskowitz, G. M.

R. D. Driver, G. M. Leskowitz, L. E. Curtiss, D. E. Moynihan, L. B. Vacha, “The characterization of infrared transmitting fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Lucas, J.

X. H. Zhang, M. V. Duhamel, H. L. Ma, C. Blanchetiere, J. Lucas, “Application of the TeX glass fibers as chemical sensors,” J. Non-Cryst. Solids 161, 327–330 (1993).
[CrossRef]

J. Lucas, X. H. Zhang, “The tellurium halide glasses,” J. Non-Cryst. Solids 125, 1–16 (1990).
[CrossRef]

Ma, H. L.

X. H. Zhang, M. V. Duhamel, H. L. Ma, C. Blanchetiere, J. Lucas, “Application of the TeX glass fibers as chemical sensors,” J. Non-Cryst. Solids 161, 327–330 (1993).
[CrossRef]

Mages, G. R.

F. L. Dickert, S. K. Schreiner, G. R. Mages, H. Kimmel, “Fiber-optic dipping sensor for organic solvents in waste-water,” Anal. Chem. 61, 2306–2309 (1989).
[CrossRef]

Miklos, R.

J. S. Sanghera, V. Q. Nguyen, R. Miklos, I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320–322 (1993).
[CrossRef]

Moynihan, D. E.

R. D. Driver, G. M. Leskowitz, L. E. Curtiss, D. E. Moynihan, L. B. Vacha, “The characterization of infrared transmitting fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Nguyen, V. Q.

J. S. Sanghera, V. Q. Nguyen, R. Miklos, I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320–322 (1993).
[CrossRef]

Nielsen, S.

J. A. Savage, S. Nielsen, “Preparation of glasses transmitting in the infrared between 8 and 15 microns,” Phys. Chem. Glasses 5, 82–86 (1964).

Piche, J.

Pouchert, C. J.

C. J. Pouchert, The Aldrich Library of FT-IR Spectra (Aldrich Chemical Company, Milwaukee, Wisc., 1981).

Rock, R. D.

P. Klocek, M. Roth, R. D. Rock, “Chalcogenide glass optical fibers and image bundles: properties and applications,” Opt. Eng. 26, 88–95 (1987).

Rodrigues, M.

Roth, M.

P. Klocek, M. Roth, R. D. Rock, “Chalcogenide glass optical fibers and image bundles: properties and applications,” Opt. Eng. 26, 88–95 (1987).

Saggese, S. J.

J. Heo, M. Rodrigues, S. J. Saggese, G. H. Sigel, “Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers,” Appl. Opt. 30, 3944–3951 (1991).
[CrossRef] [PubMed]

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).

Saito, M.

M. Saito, M. Takizawa, K. Ikegawa, H. Takami, “Optical remote sensing system for hydrocarbon gases using infrared fibers,” J. Appl. Phys. 63, 269–272 (1988).
[CrossRef]

Sanghera, J. S.

J. S. Sanghera, V. Q. Nguyen, R. Miklos, I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320–322 (1993).
[CrossRef]

Savage, J. A.

J. A. Savage, S. Nielsen, “Preparation of glasses transmitting in the infrared between 8 and 15 microns,” Phys. Chem. Glasses 5, 82–86 (1964).

Schreiner, S. K.

F. L. Dickert, S. K. Schreiner, G. R. Mages, H. Kimmel, “Fiber-optic dipping sensor for organic solvents in waste-water,” Anal. Chem. 61, 2306–2309 (1989).
[CrossRef]

Shahriari, M. R.

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).

Sigel, G. H.

J. Heo, M. Rodrigues, S. J. Saggese, G. H. Sigel, “Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers,” Appl. Opt. 30, 3944–3951 (1991).
[CrossRef] [PubMed]

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).

Stevenson, W. A.

Tai, H.

Takami, H.

M. Saito, M. Takizawa, K. Ikegawa, H. Takami, “Optical remote sensing system for hydrocarbon gases using infrared fibers,” J. Appl. Phys. 63, 269–272 (1988).
[CrossRef]

Takizawa, M.

M. Saito, M. Takizawa, K. Ikegawa, H. Takami, “Optical remote sensing system for hydrocarbon gases using infrared fibers,” J. Appl. Phys. 63, 269–272 (1988).
[CrossRef]

Tanaka, H.

Vacha, L. B.

R. D. Driver, G. M. Leskowitz, L. E. Curtiss, D. E. Moynihan, L. B. Vacha, “The characterization of infrared transmitting fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Vidrine, D. W.

Wright, N. A.

Yoshino, T.

Zhang, X. H.

X. H. Zhang, M. V. Duhamel, H. L. Ma, C. Blanchetiere, J. Lucas, “Application of the TeX glass fibers as chemical sensors,” J. Non-Cryst. Solids 161, 327–330 (1993).
[CrossRef]

J. Lucas, X. H. Zhang, “The tellurium halide glasses,” J. Non-Cryst. Solids 125, 1–16 (1990).
[CrossRef]

Anal. Chem. (2)

F. L. Dickert, S. K. Schreiner, G. R. Mages, H. Kimmel, “Fiber-optic dipping sensor for organic solvents in waste-water,” Anal. Chem. 61, 2306–2309 (1989).
[CrossRef]

M. D. DeGrandpre, L. W. Burgess, “Long path fiber-optic sensor for evanescent field absorbance measurements,” Anal. Chem. 60, 2582–2586 (1988).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

M. Saito, M. Takizawa, K. Ikegawa, H. Takami, “Optical remote sensing system for hydrocarbon gases using infrared fibers,” J. Appl. Phys. 63, 269–272 (1988).
[CrossRef]

J. Non-Cryst. Solids (3)

J. Lucas, X. H. Zhang, “The tellurium halide glasses,” J. Non-Cryst. Solids 125, 1–16 (1990).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, R. Miklos, I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320–322 (1993).
[CrossRef]

X. H. Zhang, M. V. Duhamel, H. L. Ma, C. Blanchetiere, J. Lucas, “Application of the TeX glass fibers as chemical sensors,” J. Non-Cryst. Solids 161, 327–330 (1993).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

R. D. Driver, G. M. Leskowitz, L. E. Curtiss, D. E. Moynihan, L. B. Vacha, “The characterization of infrared transmitting fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Opt. Eng. (1)

P. Klocek, M. Roth, R. D. Rock, “Chalcogenide glass optical fibers and image bundles: properties and applications,” Opt. Eng. 26, 88–95 (1987).

Opt. Lett. (1)

Phys. Chem. Glasses (1)

J. A. Savage, S. Nielsen, “Preparation of glasses transmitting in the infrared between 8 and 15 microns,” Phys. Chem. Glasses 5, 82–86 (1964).

Other (5)

Provided by Sadtler Research Laboratories, Inc., Philadelphia, Pa.

C. J. Pouchert, The Aldrich Library of FT-IR Spectra (Aldrich Chemical Company, Milwaukee, Wisc., 1981).

S. J. Saggese, M. R. Shahriari, G. H. Sigel, “Fluoride fibers for remote chemical sensing,” in Infrared Optical Materials IV, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.929, 106–114 (1988).

J. R. Gannon, “Materials for mid-infrared waveguides,” in Infrared Fibers (0.8–12 μm) I, L. G. DeShazer, C. Kao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.266, 62–68 (1981).

Z. U. Borisova, Glassy Semiconductors (Plenum, New York, 1981), p. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the chemical sensor setup. MCT, mercury cadmium telluride.

Fig. 2
Fig. 2

Attenuation curves for (a) the UV-curable acrylate-coated telluride fiber and (b) the uncoated telluride fiber used in this study.

Fig. 3
Fig. 3

(i) Measured evanescent-absorption spectra and the (ii) literature absorption data for (a) water, (b) isopropanol, (c) hexane, and (d) chloroform.

Fig. 4
Fig. 4

Spectra displaying the change in absorbance versus the concentration of (a) ethanol and (b) acetone in water.

Fig. 5
Fig. 5

Plot of the absorbance for the band at 9.5 μm versus the concentration of ethanol in water.

Fig. 6
Fig. 6

Relationship between the vibrational-band peak position and the concentration of (a) ethanol and (b) acetone in water.

Tables (2)

Tables Icon

Table 1 Chemicals and Their Sources

Tables Icon

Table 2 Peak Position (PP, in micrometers) and Absorbance (Abs) versus Solute Concentration

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( x ) A . ( 100 - x ) H 2 O ,
E = E 0 exp ( - z γ ) ,
γ = ( 2 π / λ 1 ) ( sin 2 θ - n 21 2 ) 1 / 2 ,
θ c = sin - 1 n 21 .
V = ( 2 π r / λ ) ( n 1 2 - n 2 2 ) 1 / 2 ,
η p = k / V ,
I / I 0 = 10 - α e L c ,
α e = η p α c .
log 10 ( I 0 / I ) = absorbance = α e L c .

Metrics