Abstract

Guided-wave and free-space optical interconnects are compared based on insertion loss, link efficiency, connection density, time delay, and power dissipation for three types of connection networks. Three types of free-space interconnect systems are analyzed that are representative of a wide variety of free-space systems: space-variant basis-set and space-invarient systems. Results indicate that the connection density of a space-variant free space system has a connection density roughly equivalent to a two level guided-wave system with a pitch of ~10 μm (for a 1-μm wavelength) and a core refractive index of 2.0. It is also shown that the connection density of basis-set and space-invariant free-space systems can be several orders of magnitude higher than fundamental limits on the connection density of dual-level guided-wave interconnect systems when large-scale highly connected networks are employed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription