Abstract

A reciprocal fiber-optic reflection interferometer for remote measurement of electrical current through the Faraday effect is described. The effects of polarization cross coupling because of nonideal elements are eliminated with a low-coherence source. Nonreciprocal birefringence phase modulation is employed for detection of the Faraday phase shift. The theoretical predictions are confirmed by measurements with a piece of straight fiber as the sensing element in a 100-turn solenoid. Currents from 0 to 40 A have been measured with a linear response and a noise limit of 0.015A/Hz.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity

Hongying Zhang, Yongkang Dong, Jesse Leeson, Liang Chen, and Xiaoyi Bao
Appl. Opt. 50(6) 924-929 (2011)

Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber

G. M. Müller, X. Gu, L. Yang, A. Frank, and K. Bohnert
Opt. Express 24(10) 11164-11173 (2016)

Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect

Chunxi Zhang, Chuansheng Li, Xiaxiao Wang, Lijing Li, Jia Yu, and Xiujuan Feng
Appl. Opt. 51(18) 3977-3988 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription