Abstract

The objective is to estimate the Rayleigh limit in bidirectional reflectance distribution function (BRDF) measurements caused by air in the laboratory, the wavelength, and the path length of light in the receiver field of view. Moreover, we intend to show the trend for the reduction of this limit by introducing a medium with small refractive index and by using a longer wavelength. Although the BRDF typically describes the angular distribution of scattered light from surfaces, the expression describing the equivalent BRDF caused by the optical scattering from gas molecules in the optical path is derived through the use of the Rayleigh scattering theory. The instrumentation is described, and the experimental results of the equivalent BRDF caused by gas scattering from molecules in clear air, nitrogen, and helium gases are reported. These results confirm the trends of the prediction.

© 1994 Optical Society of America

Full Article  |  PDF Article

Corrections

Clara C. Asmail, Albert C. Parr, and Jack J. Hsia, "Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements: corrigendum," Appl. Opt. 38, 6027-6028 (1999)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-38-28-6027

OSA Recommended Articles
Extreme ultraviolet scatterometer: design and capability

Michael P. Newell and Ritva A. M. Keski-Kuha
Appl. Opt. 36(13) 2897-2904 (1997)

Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser

Fumikazu Taketani, Megumi Kawai, Kenshi Takahashi, and Yutaka Matsumi
Appl. Opt. 46(6) 907-915 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription