Abstract

We analyzed the influence of the measurand-temperature cross-sensitivity effect on temperature stability in fiber-optic cross-spliced sensors that employ highly birefringent fibers. We show that the ratio of the measurand-temperature cross-sensitivity coefficient to the measurand first-order sensitivity determines the physical limit for temperature stability in cross-spliced sensors. Employing polarimetric as well as white-light interferometric methods, we experimentally determine a hydrostatic pressure-temperature cross-sensitivity coefficient in York bow-tie 800 fiber. From this we estimate the achievable limit for temperature stability of cross-spliced pressure sensors under environmental temperature changes.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, Boston, 1988).
  2. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).
  3. F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurement of temperature and strain: cross-sensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
    [Crossref]
  4. F. Farahi, D. A. Jackson, “Temperature and strain sensing using monomode optical fiber,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 234–243 (1992).
    [Crossref]
  5. J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
    [Crossref]
  6. W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 233–237 (1990).
    [Crossref]
  7. W. J. Bock, W. Urbanczyk, “Electronically scanned whitelight interferometric sensor for high hydrostatic pressure measurements,” in Proceedings of the Ninth Optical Fiber Sensors Conference (Centro Duplicatione, Firenze, Italy, 1993) pp. 135–139.
  8. M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
    [Crossref]
  9. W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow-tie fibers,” Appl. Opt. 29, 3484–3488 (1990).
    [Crossref] [PubMed]
  10. W. J. Bock, W. Urbanczyk, “Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
    [Crossref] [PubMed]
  11. W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
    [Crossref] [PubMed]
  12. W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing highly birefringent fibers,” Opt. Commun. 101, 157–162 (1993).
    [Crossref]

1994 (1)

1993 (2)

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing highly birefringent fibers,” Opt. Commun. 101, 157–162 (1993).
[Crossref]

W. J. Bock, W. Urbanczyk, “Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
[Crossref] [PubMed]

1990 (3)

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurement of temperature and strain: cross-sensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[Crossref]

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 233–237 (1990).
[Crossref]

W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow-tie fibers,” Appl. Opt. 29, 3484–3488 (1990).
[Crossref] [PubMed]

1984 (1)

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[Crossref]

Barwicz, A.

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 233–237 (1990).
[Crossref]

Bock, W. J.

W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
[Crossref] [PubMed]

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing highly birefringent fibers,” Opt. Commun. 101, 157–162 (1993).
[Crossref]

W. J. Bock, W. Urbanczyk, “Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
[Crossref] [PubMed]

W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow-tie fibers,” Appl. Opt. 29, 3484–3488 (1990).
[Crossref] [PubMed]

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 233–237 (1990).
[Crossref]

W. J. Bock, W. Urbanczyk, “Electronically scanned whitelight interferometric sensor for high hydrostatic pressure measurements,” in Proceedings of the Ninth Optical Fiber Sensors Conference (Centro Duplicatione, Firenze, Italy, 1993) pp. 135–139.

Brevignon, M.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[Crossref]

Culshaw, B.

B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, Boston, 1988).

Dakin, J.

B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, Boston, 1988).

Dakin, J. P.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[Crossref]

Domanski, A. W.

Farahi, F.

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurement of temperature and strain: cross-sensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[Crossref]

F. Farahi, D. A. Jackson, “Temperature and strain sensing using monomode optical fiber,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 234–243 (1992).
[Crossref]

Gaouditz, O.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[Crossref]

Jackson, D. A.

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurement of temperature and strain: cross-sensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[Crossref]

F. Farahi, D. A. Jackson, “Temperature and strain sensing using monomode optical fiber,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 234–243 (1992).
[Crossref]

Jones, J. D. C.

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurement of temperature and strain: cross-sensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[Crossref]

Le Pesant, J. P.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[Crossref]

Turpin, M.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[Crossref]

Udd, E.

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).

Urbanczyk, W.

W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
[Crossref] [PubMed]

W. J. Bock, W. Urbanczyk, “Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
[Crossref] [PubMed]

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing highly birefringent fibers,” Opt. Commun. 101, 157–162 (1993).
[Crossref]

W. J. Bock, W. Urbanczyk, “Electronically scanned whitelight interferometric sensor for high hydrostatic pressure measurements,” in Proceedings of the Ninth Optical Fiber Sensors Conference (Centro Duplicatione, Firenze, Italy, 1993) pp. 135–139.

Wade, C. A.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[Crossref]

Webb, D. J.

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurement of temperature and strain: cross-sensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[Crossref]

Wolinski, T. R.

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 233–237 (1990).
[Crossref]

W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow-tie fibers,” Appl. Opt. 29, 3484–3488 (1990).
[Crossref] [PubMed]

Zaremba, M.

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing highly birefringent fibers,” Opt. Commun. 101, 157–162 (1993).
[Crossref]

Appl. Opt. (3)

Electron. Lett. (1)

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, T. R. Wolinski, A. Barwicz, “Development of a polarimetric optical fiber sensor for electronic measurement of high pressure,” IEEE Trans. Instrum. Meas. 39, 233–237 (1990).
[Crossref]

J. Lightwave Technol. (1)

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurement of temperature and strain: cross-sensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[Crossref]

Opt. Commun. (1)

W. J. Bock, W. Urbanczyk, M. Zaremba, “Electronically scanned white-light interferometric strain sensor employing highly birefringent fibers,” Opt. Commun. 101, 157–162 (1993).
[Crossref]

Other (5)

F. Farahi, D. A. Jackson, “Temperature and strain sensing using monomode optical fiber,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511, 234–243 (1992).
[Crossref]

B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, Boston, 1988).

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).

W. J. Bock, W. Urbanczyk, “Electronically scanned whitelight interferometric sensor for high hydrostatic pressure measurements,” in Proceedings of the Ninth Optical Fiber Sensors Conference (Centro Duplicatione, Firenze, Italy, 1993) pp. 135–139.

M. Turpin, M. Brevignon, J. P. Le Pesant, O. Gaouditz, “Interfero-polarimetric fiber optic sensor for both pressure and temperature measurements,” in Proceedings of the Eighth International Conference on Optical Fiber Sensors '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 362–365.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of cross-spliced sensor that employs HB fibers.

Fig. 2
Fig. 2

Setup for polarimetric measurement of residual temperature response in cross-spliced high-hydrostatic-pressure sensors.

Fig. 3
Fig. 3

Results of measurement of output intensity versus temperature for two different pressures.

Fig. 4
Fig. 4

Residual temperature sensitivities of cross-spliced sensors versus applied pressure for the (a) shorter, L1 = 3.15 m, and (b) longer, L1′ = 6.36 m, sensors.

Fig. 5
Fig. 5

Configuration of the white-light interferometric setup.

Fig. 6
Fig. 6

Responses of the white-light interferometric sensor to applied pressure at two different temperatures.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

φ 1 = 2 π λ L 1 Δ n ,
Δ φ 1 ( Δ T , Δ X ) = φ 1 ( T , X ) φ 1 ( T 0 , X 0 ) = L 1 K T Δ T + L 1 K T T Δ T 2 + L 1 K X Δ X + L 1 K X X Δ X 2 + L 1 K T X Δ T Δ X ,
K α = 1 φ 1 L 1 α = 2 π λ ( Δ n α + Δ n L 1 L 1 α ) for α = T , X ,
K α β = 1 2 L 1 2 φ 1 α β = π λ ( 2 Δ n α β + Δ n β 1 L 1 L 1 α + Δ n α 1 L 1 L 1 β + Δ n L 1 2 L 1 α β ) for α , β = T , X .
Δ φ 2 ( Δ T , Δ X ) = φ 2 ( X , T ) φ 2 ( X 0 , T 0 ) = L 2 K T Δ T + L 2 K T T Δ T 2 .
Δ φ S ( Δ T , Δ X ) = Δ φ 1 ( Δ T , Δ X ) Δ φ 2 ( Δ T , Δ X ) = Δ L K T Δ T + Δ L K T T Δ T 2 + L 1 K T X Δ T Δ X + L 1 K X Δ X + L 1 K X X Δ X 2 .
ρ T = Δ φ S T = Δ L K T + L 1 K T X Δ x .
S T = φ S ( X , T ) φ S ( X , T 0 ) φ S ( X , T ) φ S ( X 0 , T ) .
S T = Δ L K T Δ T + L 1 K T X Δ T Δ X L 1 K X Δ X .
S T K T X K X Δ T .
K TX = 1 L 1 ρ T X .
I S ( Δ T , P ) = I 0 { 1 cos [ Δ φ S ( Δ T , P ) ] } ,
Δ y = q L 1 τ 1 P Δ P ,
τ 1 P = 1 c ( Δ n 1 P 1 2 Δ n 1 λ 0 P λ ) = 1 c Δ n 1 P ,
Δ y = q φ 1 c P Δ P .
Δ N f = 1 2 π φ 1 P Δ P .
K TP = 2 π L 1 ( T 2 T 1 ) [ Δ N f ( T 1 ) P Δ N f ( T 2 ) P ] ,

Metrics