Abstract

The spectral performance of freestanding resonant metal-mesh bandpass filters operating with center frequencies ranging from 585 GHz to 2.1 THz is presented. These filters are made up of a 12-μm-thick copper film with an array of cross-shaped apertures that fill a circular area with a 50-mm diameter. The filters exhibit power transmission in the range 97–100% at their respective center frequencies and stop-band rejection in excess of 18 dB. The theoretically predicted nondiffracting properties of the meshes are experimentally verified through high-resolution beam mapping. Scalability of the filter spectra with mesh dimensions is demonstrated over a wide spectral range. Several modeling methods are considered, and results from the models are shown.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Parker, S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17, 612–614 (1981).
    [CrossRef]
  2. K. J. Kogler, R. G. Pastor, “Infrared filters fabricated from submicron loop antenna arrays,” Appl. Opt. 27, 18–19 (1988).
    [CrossRef] [PubMed]
  3. E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881(1981).
    [CrossRef]
  4. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, L. B. Whitbourn, “Annular-slot arrays as far-infrared bandpass filters,” Opt. Lett. 14, 931–933 (1989).
    [CrossRef] [PubMed]
  5. E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
    [CrossRef]
  6. V. D. Agrawal, W. A. Imbriale, “Design of a dichroic Cassegrain subreflector,” IEEE Trans. Antennas Propag. AP-27, 466–473 (1979).
    [CrossRef]
  7. C. M. Rhoads, E. K. Damon, B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21, 2814–2816 (1982).
    [CrossRef] [PubMed]
  8. R. Ulrich, “Interference filters for the far infrared,” Appl. Opt. 7, 1987–1996 (1968).
    [CrossRef] [PubMed]
  9. J. E. Davis, “Bandpass interference filters for very far infrared astronomy,” Infrared Phys. 20, 287–290 (1980).
    [CrossRef]
  10. P. Tomaselli, D. C. Edewaard, P. Gillan, K. D. Möller, “Far-infrared bandpass filters from cross-shaped grids,” Appl. Opt. 20, 1361–1366 (1981).
    [CrossRef] [PubMed]
  11. R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
    [CrossRef]
  12. K. Sakai, L. Genzel, Review of Millimeter Waves (Plenum, New York, 1983), Vol. 1, pp. 155–247.
    [CrossRef]
  13. T. Timusk, P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981).
    [CrossRef] [PubMed]
  14. C. K. Carniglia, “Comparison of several shortwave pass filter designs,” Appl. Opt. 28, 2820–2823 (1989).
    [CrossRef] [PubMed]
  15. P. H. Siegel, R. J. Dengler, J. C. Chen, “THz dichroic plates for use at high angles of incidence,” IEEE Microwave Guided Wave Lett. 1, 8–9 (1991).
    [CrossRef]
  16. S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983).
    [CrossRef] [PubMed]
  17. D. H. Martin, Polarizing (Martin–Puplett) Interferometric Spectrometers for the Near- and Submillimeter Spectra, Vol. 6 of Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982).
  18. D. M. Pozar, Microwave Engineering (Addison-WesleyReading, Mass., 1990), pp. 594–602.
  19. HFSS User's Reference Manual (Hewlett-Packard, Santa Rosa, Calif.), App. A.
  20. R. L. Eisenhart, P. J. Khan, “Theoretical and experimental analysis of a waveguide mounting structure,” IEEE Trans. Microwave Theory Tech. MTT-19, 706–719 (1971).
    [CrossRef]
  21. D. B. Rutledge, S. E. Schwarz, “Planar multimode detector arrays for infrared and millimeter-wave applications;,” IEEE J. Quantum Electron. QE-17, 407–414 (1981).
    [CrossRef]

1991 (1)

P. H. Siegel, R. J. Dengler, J. C. Chen, “THz dichroic plates for use at high angles of incidence,” IEEE Microwave Guided Wave Lett. 1, 8–9 (1991).
[CrossRef]

1989 (2)

1988 (1)

1983 (2)

S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983).
[CrossRef] [PubMed]

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

1982 (1)

1981 (5)

P. Tomaselli, D. C. Edewaard, P. Gillan, K. D. Möller, “Far-infrared bandpass filters from cross-shaped grids,” Appl. Opt. 20, 1361–1366 (1981).
[CrossRef] [PubMed]

D. B. Rutledge, S. E. Schwarz, “Planar multimode detector arrays for infrared and millimeter-wave applications;,” IEEE J. Quantum Electron. QE-17, 407–414 (1981).
[CrossRef]

T. Timusk, P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981).
[CrossRef] [PubMed]

E. A. Parker, S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17, 612–614 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881(1981).
[CrossRef]

1980 (1)

J. E. Davis, “Bandpass interference filters for very far infrared astronomy,” Infrared Phys. 20, 287–290 (1980).
[CrossRef]

1979 (2)

E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
[CrossRef]

V. D. Agrawal, W. A. Imbriale, “Design of a dichroic Cassegrain subreflector,” IEEE Trans. Antennas Propag. AP-27, 466–473 (1979).
[CrossRef]

1971 (1)

R. L. Eisenhart, P. J. Khan, “Theoretical and experimental analysis of a waveguide mounting structure,” IEEE Trans. Microwave Theory Tech. MTT-19, 706–719 (1971).
[CrossRef]

1968 (1)

Agrawal, V. D.

V. D. Agrawal, W. A. Imbriale, “Design of a dichroic Cassegrain subreflector,” IEEE Trans. Antennas Propag. AP-27, 466–473 (1979).
[CrossRef]

Botten, L. C.

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Carniglia, C. K.

Chase, S. T.

Chen, J. C.

P. H. Siegel, R. J. Dengler, J. C. Chen, “THz dichroic plates for use at high angles of incidence,” IEEE Microwave Guided Wave Lett. 1, 8–9 (1991).
[CrossRef]

Compton, R. C.

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Damon, E. K.

Davis, J. E.

J. E. Davis, “Bandpass interference filters for very far infrared astronomy,” Infrared Phys. 20, 287–290 (1980).
[CrossRef]

Dawes, D. H.

Dengler, R. J.

P. H. Siegel, R. J. Dengler, J. C. Chen, “THz dichroic plates for use at high angles of incidence,” IEEE Microwave Guided Wave Lett. 1, 8–9 (1991).
[CrossRef]

Derrick, G. H.

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Edewaard, D. C.

Eisenhart, R. L.

R. L. Eisenhart, P. J. Khan, “Theoretical and experimental analysis of a waveguide mounting structure,” IEEE Trans. Microwave Theory Tech. MTT-19, 706–719 (1971).
[CrossRef]

Genzel, L.

K. Sakai, L. Genzel, Review of Millimeter Waves (Plenum, New York, 1983), Vol. 1, pp. 155–247.
[CrossRef]

Gillan, P.

Hamdy, S. M. A.

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881(1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17, 612–614 (1981).
[CrossRef]

Imbriale, W. A.

V. D. Agrawal, W. A. Imbriale, “Design of a dichroic Cassegrain subreflector,” IEEE Trans. Antennas Propag. AP-27, 466–473 (1979).
[CrossRef]

Joseph, R. D.

Khan, P. J.

R. L. Eisenhart, P. J. Khan, “Theoretical and experimental analysis of a waveguide mounting structure,” IEEE Trans. Microwave Theory Tech. MTT-19, 706–719 (1971).
[CrossRef]

Kogler, K. J.

Krug, P. A.

Langley, R. J.

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881(1981).
[CrossRef]

Macfarlane, J. C.

Martin, D. H.

D. H. Martin, Polarizing (Martin–Puplett) Interferometric Spectrometers for the Near- and Submillimeter Spectra, Vol. 6 of Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982).

McPhedran, R. C.

P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, L. B. Whitbourn, “Annular-slot arrays as far-infrared bandpass filters,” Opt. Lett. 14, 931–933 (1989).
[CrossRef] [PubMed]

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Möller, K. D.

Munk, B. A.

C. M. Rhoads, E. K. Damon, B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21, 2814–2816 (1982).
[CrossRef] [PubMed]

E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
[CrossRef]

Parker, E. A.

E. A. Parker, S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17, 612–614 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881(1981).
[CrossRef]

Pastor, R. G.

Pelton, E. L.

E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
[CrossRef]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Addison-WesleyReading, Mass., 1990), pp. 594–602.

Rhoads, C. M.

Richards, P. L.

Rutledge, D. B.

D. B. Rutledge, S. E. Schwarz, “Planar multimode detector arrays for infrared and millimeter-wave applications;,” IEEE J. Quantum Electron. QE-17, 407–414 (1981).
[CrossRef]

Sakai, K.

K. Sakai, L. Genzel, Review of Millimeter Waves (Plenum, New York, 1983), Vol. 1, pp. 155–247.
[CrossRef]

Schwarz, S. E.

D. B. Rutledge, S. E. Schwarz, “Planar multimode detector arrays for infrared and millimeter-wave applications;,” IEEE J. Quantum Electron. QE-17, 407–414 (1981).
[CrossRef]

Siegel, P. H.

P. H. Siegel, R. J. Dengler, J. C. Chen, “THz dichroic plates for use at high angles of incidence,” IEEE Microwave Guided Wave Lett. 1, 8–9 (1991).
[CrossRef]

Timusk, T.

Tomaselli, P.

Ulrich, R.

Whitbourn, L. B.

Wright, W.

Appl. Opt. (7)

Electron. Lett. (2)

E. A. Parker, S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17, 612–614 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881(1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. B. Rutledge, S. E. Schwarz, “Planar multimode detector arrays for infrared and millimeter-wave applications;,” IEEE J. Quantum Electron. QE-17, 407–414 (1981).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

P. H. Siegel, R. J. Dengler, J. C. Chen, “THz dichroic plates for use at high angles of incidence,” IEEE Microwave Guided Wave Lett. 1, 8–9 (1991).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag. AP-27, 323–330 (1979).
[CrossRef]

V. D. Agrawal, W. A. Imbriale, “Design of a dichroic Cassegrain subreflector,” IEEE Trans. Antennas Propag. AP-27, 466–473 (1979).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. L. Eisenhart, P. J. Khan, “Theoretical and experimental analysis of a waveguide mounting structure,” IEEE Trans. Microwave Theory Tech. MTT-19, 706–719 (1971).
[CrossRef]

Infrared Phys. (2)

J. E. Davis, “Bandpass interference filters for very far infrared astronomy,” Infrared Phys. 20, 287–290 (1980).
[CrossRef]

R. C. Compton, R. C. McPhedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Opt. Lett. (1)

Other (4)

K. Sakai, L. Genzel, Review of Millimeter Waves (Plenum, New York, 1983), Vol. 1, pp. 155–247.
[CrossRef]

D. H. Martin, Polarizing (Martin–Puplett) Interferometric Spectrometers for the Near- and Submillimeter Spectra, Vol. 6 of Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982).

D. M. Pozar, Microwave Engineering (Addison-WesleyReading, Mass., 1990), pp. 594–602.

HFSS User's Reference Manual (Hewlett-Packard, Santa Rosa, Calif.), App. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Photographs of mesh filter: (a) 585 GHz (402/261/76), (b) 2.1 THz (113/73/21).

Fig. 2
Fig. 2

Spectral profiles of four bandpass mesh filters.

Fig. 3
Fig. 3

Filter transmission test configuration employing a submillimeter wave mixer; IF, intermediate frequency.

Fig. 4
Fig. 4

Slices through a Gaussian laser beam at 585 GHz, with or without a mesh filter in the beam path.

Fig. 5
Fig. 5

Simple transmission line model for bandpass resonant mesh filters.

Fig. 6
Fig. 6

Modeled data (curves) and measured FTS data (data points) for four mesh filters. The model used is that of Fig. 5 with R, L, and C values fitted to the FTS data for the 585-GHz mesh filter and then scaled for the higher-frequency filters.

Fig. 7
Fig. 7

Mesh filter unit cell embedded in a waveguide with electric walls on the top and bottom and magnetic walls on both sides.

Fig. 8
Fig. 8

Measured and modeled transmission for the (a) 585-GHz mesh filter, (b) 2.1-THz mesh filter; transmission line curves are the same as the ones shown in Fig. 6.

Fig. 9
Fig. 9

Unit cell used in the EMF method, where M is the assumed magnetic current distribution in the aperture.

Fig. 10
Fig. 10

Transmission line model derived from the EMF method.

Tables (1)

Tables Icon

Table 1 Design and Measured Mesh Filter Characteristics

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T rec = ( L f 1 ) T 0 + L f T rec .
P T P IN = | S 21 | 2 = 1 [ | ( Z grid Z 0 ) Z 0 | | ( Z grid Z 0 ) + Z 0 | ] 2 ,
C 0 = ζ geom 1 j ω 2 a b n = 1 γ y , n 2 ( Y 0 n TM + + Y 0 n TM ) ,
C m = 1 j ω a 2 b 1 γ x , m 2 n = 0 ε 0 n k x 2 + k y 2 × γ y , n 2 k y 2 ( Y m n TM + + Y m n TM ) ,
L m 1 = j ω a 2 b 1 γ x , m 2 n = 0 ε 0 n k x 2 + k y 2 × γ y , n 2 k x 2 ( Y m n TE + + Y m n TE ) ,
ε 0 n = { 2 , n = 0 1 , n 0 .
Y m n TM = ω ε k z ,
Y m n TE = k z ω μ ,
k z = ( ω 2 μ ε k x 2 k y 2 ) 1 / 2 .
γ x , m = sinc ( m π g a ) , γ y , m = sinc ( n π w b ) .
M a = M o [ w 2 ( b y ) 2 ] 1 / 2 x ̂ .
γ x , m = 2 π 0 g [ cos ( m π x a ) ( g 2 x 2 ) 1 / 2 ] d x , γ y , n = 2 π 0 w [ cos ( n π y b ) ( w 2 y 2 ) 1 / 2 ] d y .

Metrics