Abstract

The goal of the optical design of luminaires and other radiation distributors is to attain the desired illumination on the target with a given source while minimizing losses. Whereas the required design procedure is well known for situations in which the source can be approximated as a point or as a line, the development of a general analytical design method for extended sources began only recently. One can obtain a solution for extended sources by establishing a one-to-one correspondence between target points and edge rays. Here the possible solutions in two dimensions (cylindrical sources) are identified, based on only one reflection for the edge rays. The solutions depend on whether the “image” on the reflector is bound by rays from the near or the far edge of the source. For each case there are two solutions that could be called converging and diverging by analogy with imaging optics. Counting the topological choices for the boundaries of the “image” we obtain a complete classification of the building blocks from which luminaires can be designed. One can construct interesting hybrid configurations by combining these building blocks. Thus one can gain a great deal of flexibility for tailoring designs to specific requirements. The differential equation for the reflector is shown to have an analytical solution. Explicit results are presented for symmetric configurations with the target at infinity.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription