Abstract

New experimental bulk reflectance and emittance spectra from the 9–15-μm reststrahlen band region of polycrystallline beryllium oxide are reported. Note that the polycrystalline material exhibits a dip at 10 μm, which is not present in spectra for single crystals. The possible origins of this feature are discussed including absorption by a surface oscillation excited at boundaries of 20-μm crystalline grains. Owing to the reststrahlen band, beryllium oxide is selectively low, emitting in the primary atmospheric window, which makes this material useful for frost prevention when electrical conductors cannot be used. This protection is susceptible to reduction by surface contaminants from air pollution. Using an established acceleration procedure, we simulated such pollution, and the increase in emittance was measured. It was observed that the emissivity increased from 0.31 for a clean surface to 0.36 for a surface heavily polluted by an industrial atmosphere.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Campbell, H. E. Hagy, “Ceramic materials,” in CRC Practical Handbook of Materials Science, C. T. Lynch, ed. (CRC, Boca Raton, Fla., 1989), Table 6.2-2.
  2. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), Sec. 12.7.
  3. Ref. 1, Table 6.2-4.
  4. J. Plendl, “Some new interrelations in the properties of solids based on anharmonic cohesive forces,” Phys. Rev. 123, 1172–1180 (1961).
    [CrossRef]
  5. J. Plendl, P. Gielisse, “Hardness of nonmetallic solids on an atomic basis,” Phys. Rev. 125, 828–832 (1962).
    [CrossRef]
  6. J. Plendl, P. Gielisse, “Infrared spectra of inorganic dielectric solids,” Appl. Opt. 3, 943–949 (1964).
    [CrossRef]
  7. J. Plendl, P. Gielisse, “Characteristic frequencies from infrared and elastic data,” Appl. Opt. 4, 853–856 (1965).
    [CrossRef]
  8. D. W. Berreman, “Infrared absorption at longitudinal optical frequency in cubic crystal films,” Phys. Rev. 130, 2193–2198 (1963).
    [CrossRef]
  9. C. G. Ribbing, E. Wäckelgård, “Reststrahlen bands as property indicators for materials in dielectric coatings,” Thin Solid Films 206, 312–317 (1991).
    [CrossRef]
  10. E. Loh, “Optical phonons in BeO crystals,” Phys. Rev. 166, 673–678 (1968).
    [CrossRef]
  11. M. E. Thomas, R. J. Joseph, “Optical phonon characteristics of diamond, beryllia, and cubic zirconia,” in Window and Dome Technologies and Materials II, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1326, 120–126 (1990).
    [CrossRef]
  12. C. G. Ribbing, “Beryllium oxide: a frost preventing insulator,” Opt. Lett. 15, 882–884 (1990);Swedish patent8901422-9 (April1989).
    [CrossRef] [PubMed]
  13. G. Laffay, G. Fadevilhe, F. Schambourgh, K. Keita, “Improvements in vehicle windows,” U.K. patent1,598,924 (August1977).
  14. B. L. Adamson, “Fordonsruta av glas,” Swedish Patent7,609,860-7 (September1976).
  15. I. Hamberg, J. S. E. M. Svensson, T. S. Eriksson, C. G. Granqvist, P. Arrenius, F. Norin, “Radiative cooling and frost formation on surfaces with different thermal emittance: theoretical analysis and practical experience,” Appl. Opt. 26, 2131–2136 (1987).
    [CrossRef] [PubMed]
  16. S. Hörnfeldt, Swedish Transmission Research Institute AB, Ludvika, now with ABB Corporate Research, Västerås, Sweden (personal communication, 1987).
  17. C. F. Bohren, “An essay on dew,” Weatherwise 41, 226–231 (1988).
    [CrossRef]
  18. C. G. Ribbing, “Reststrahlen material bilayers: an option for tailoring in the infrared,” Appl. Opt. 32, 5531–5534 (1993).
    [CrossRef] [PubMed]
  19. Our samples were regular products from the National Beryllia Division of General Ceramics Inc., Haskell, N.J., prepared from Brush & Wellman powder raw material.
  20. For example, J. F. Snell, “Radiometry and photometry,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), Sec. 1.
  21. Standard Procedure IEC 507, 2nd ed. (International Electric Committee, Geneva, Switzerland).
  22. Tiefschwarz 9005, obtained from Mankiewicz Gebr through 3M Swedish AB, Bollstanäs Vägens 3, 19189 Sollenthna, Sweden.
  23. D. F. Edwards, R. H. White, “Beryllium oxide (BeO),” in Handbook of Optical Constants II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 805–814.
  24. W. G. Spitzer, D. Kleinman, D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
    [CrossRef]
  25. igor, WaveMetrics, Lake Oswego, Ore. 97035.
  26. For example, F. Wooten, Optical Properties of Solids (Academic, New York, 1972), Sec. 3.6.
  27. J. R. Durig, R. C. Lord, W. J. Gardner, L. H. Johnston, “Infrared transmittance and reflectance of beryllium oxide,” J. Opt. Soc. Am. 52, 1078 (1962).
    [CrossRef]
  28. D. Schalch, A. Scharmann, A. Weiss, “Characterization of reactively sputtered BeO films,” Thin Solid Films 124, 351–358 (1985).
    [CrossRef]
  29. T. Takagi, K. Matsubara, H. Takaoka, “Optical and thermal properties of BeO thin films prepared by reactive ionized-cluster beam technique,” J. Appl. Phys. 51, 5419–5424(1980).
    [CrossRef]

1993 (1)

1991 (1)

C. G. Ribbing, E. Wäckelgård, “Reststrahlen bands as property indicators for materials in dielectric coatings,” Thin Solid Films 206, 312–317 (1991).
[CrossRef]

1990 (1)

1988 (1)

C. F. Bohren, “An essay on dew,” Weatherwise 41, 226–231 (1988).
[CrossRef]

1987 (1)

1985 (1)

D. Schalch, A. Scharmann, A. Weiss, “Characterization of reactively sputtered BeO films,” Thin Solid Films 124, 351–358 (1985).
[CrossRef]

1980 (1)

T. Takagi, K. Matsubara, H. Takaoka, “Optical and thermal properties of BeO thin films prepared by reactive ionized-cluster beam technique,” J. Appl. Phys. 51, 5419–5424(1980).
[CrossRef]

1968 (1)

E. Loh, “Optical phonons in BeO crystals,” Phys. Rev. 166, 673–678 (1968).
[CrossRef]

1965 (1)

1964 (1)

1963 (1)

D. W. Berreman, “Infrared absorption at longitudinal optical frequency in cubic crystal films,” Phys. Rev. 130, 2193–2198 (1963).
[CrossRef]

1962 (2)

1961 (1)

J. Plendl, “Some new interrelations in the properties of solids based on anharmonic cohesive forces,” Phys. Rev. 123, 1172–1180 (1961).
[CrossRef]

1959 (1)

W. G. Spitzer, D. Kleinman, D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[CrossRef]

Adamson, B. L.

B. L. Adamson, “Fordonsruta av glas,” Swedish Patent7,609,860-7 (September1976).

Arrenius, P.

Berreman, D. W.

D. W. Berreman, “Infrared absorption at longitudinal optical frequency in cubic crystal films,” Phys. Rev. 130, 2193–2198 (1963).
[CrossRef]

Bohren, C. F.

C. F. Bohren, “An essay on dew,” Weatherwise 41, 226–231 (1988).
[CrossRef]

Bowen, H. K.

W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), Sec. 12.7.

Campbell, D. E.

D. E. Campbell, H. E. Hagy, “Ceramic materials,” in CRC Practical Handbook of Materials Science, C. T. Lynch, ed. (CRC, Boca Raton, Fla., 1989), Table 6.2-2.

Durig, J. R.

Edwards, D. F.

D. F. Edwards, R. H. White, “Beryllium oxide (BeO),” in Handbook of Optical Constants II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 805–814.

Eriksson, T. S.

Fadevilhe, G.

G. Laffay, G. Fadevilhe, F. Schambourgh, K. Keita, “Improvements in vehicle windows,” U.K. patent1,598,924 (August1977).

Gardner, W. J.

Gielisse, P.

Granqvist, C. G.

Hagy, H. E.

D. E. Campbell, H. E. Hagy, “Ceramic materials,” in CRC Practical Handbook of Materials Science, C. T. Lynch, ed. (CRC, Boca Raton, Fla., 1989), Table 6.2-2.

Hamberg, I.

Hörnfeldt, S.

S. Hörnfeldt, Swedish Transmission Research Institute AB, Ludvika, now with ABB Corporate Research, Västerås, Sweden (personal communication, 1987).

Johnston, L. H.

Joseph, R. J.

M. E. Thomas, R. J. Joseph, “Optical phonon characteristics of diamond, beryllia, and cubic zirconia,” in Window and Dome Technologies and Materials II, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1326, 120–126 (1990).
[CrossRef]

Keita, K.

G. Laffay, G. Fadevilhe, F. Schambourgh, K. Keita, “Improvements in vehicle windows,” U.K. patent1,598,924 (August1977).

Kingery, W. D.

W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), Sec. 12.7.

Kleinman, D.

W. G. Spitzer, D. Kleinman, D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[CrossRef]

Laffay, G.

G. Laffay, G. Fadevilhe, F. Schambourgh, K. Keita, “Improvements in vehicle windows,” U.K. patent1,598,924 (August1977).

Loh, E.

E. Loh, “Optical phonons in BeO crystals,” Phys. Rev. 166, 673–678 (1968).
[CrossRef]

Lord, R. C.

Matsubara, K.

T. Takagi, K. Matsubara, H. Takaoka, “Optical and thermal properties of BeO thin films prepared by reactive ionized-cluster beam technique,” J. Appl. Phys. 51, 5419–5424(1980).
[CrossRef]

Norin, F.

Plendl, J.

J. Plendl, P. Gielisse, “Characteristic frequencies from infrared and elastic data,” Appl. Opt. 4, 853–856 (1965).
[CrossRef]

J. Plendl, P. Gielisse, “Infrared spectra of inorganic dielectric solids,” Appl. Opt. 3, 943–949 (1964).
[CrossRef]

J. Plendl, P. Gielisse, “Hardness of nonmetallic solids on an atomic basis,” Phys. Rev. 125, 828–832 (1962).
[CrossRef]

J. Plendl, “Some new interrelations in the properties of solids based on anharmonic cohesive forces,” Phys. Rev. 123, 1172–1180 (1961).
[CrossRef]

Ribbing, C. G.

Schalch, D.

D. Schalch, A. Scharmann, A. Weiss, “Characterization of reactively sputtered BeO films,” Thin Solid Films 124, 351–358 (1985).
[CrossRef]

Schambourgh, F.

G. Laffay, G. Fadevilhe, F. Schambourgh, K. Keita, “Improvements in vehicle windows,” U.K. patent1,598,924 (August1977).

Scharmann, A.

D. Schalch, A. Scharmann, A. Weiss, “Characterization of reactively sputtered BeO films,” Thin Solid Films 124, 351–358 (1985).
[CrossRef]

Snell, J. F.

For example, J. F. Snell, “Radiometry and photometry,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), Sec. 1.

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[CrossRef]

Svensson, J. S. E. M.

Takagi, T.

T. Takagi, K. Matsubara, H. Takaoka, “Optical and thermal properties of BeO thin films prepared by reactive ionized-cluster beam technique,” J. Appl. Phys. 51, 5419–5424(1980).
[CrossRef]

Takaoka, H.

T. Takagi, K. Matsubara, H. Takaoka, “Optical and thermal properties of BeO thin films prepared by reactive ionized-cluster beam technique,” J. Appl. Phys. 51, 5419–5424(1980).
[CrossRef]

Thomas, M. E.

M. E. Thomas, R. J. Joseph, “Optical phonon characteristics of diamond, beryllia, and cubic zirconia,” in Window and Dome Technologies and Materials II, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1326, 120–126 (1990).
[CrossRef]

Uhlmann, D. R.

W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), Sec. 12.7.

Wäckelgård, E.

C. G. Ribbing, E. Wäckelgård, “Reststrahlen bands as property indicators for materials in dielectric coatings,” Thin Solid Films 206, 312–317 (1991).
[CrossRef]

Walsh, D.

W. G. Spitzer, D. Kleinman, D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[CrossRef]

Weiss, A.

D. Schalch, A. Scharmann, A. Weiss, “Characterization of reactively sputtered BeO films,” Thin Solid Films 124, 351–358 (1985).
[CrossRef]

White, R. H.

D. F. Edwards, R. H. White, “Beryllium oxide (BeO),” in Handbook of Optical Constants II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 805–814.

Wooten, F.

For example, F. Wooten, Optical Properties of Solids (Academic, New York, 1972), Sec. 3.6.

Appl. Opt. (4)

J. Appl. Phys. (1)

T. Takagi, K. Matsubara, H. Takaoka, “Optical and thermal properties of BeO thin films prepared by reactive ionized-cluster beam technique,” J. Appl. Phys. 51, 5419–5424(1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Phys. Rev. (5)

J. Plendl, “Some new interrelations in the properties of solids based on anharmonic cohesive forces,” Phys. Rev. 123, 1172–1180 (1961).
[CrossRef]

J. Plendl, P. Gielisse, “Hardness of nonmetallic solids on an atomic basis,” Phys. Rev. 125, 828–832 (1962).
[CrossRef]

D. W. Berreman, “Infrared absorption at longitudinal optical frequency in cubic crystal films,” Phys. Rev. 130, 2193–2198 (1963).
[CrossRef]

E. Loh, “Optical phonons in BeO crystals,” Phys. Rev. 166, 673–678 (1968).
[CrossRef]

W. G. Spitzer, D. Kleinman, D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113, 127–132 (1959).
[CrossRef]

Thin Solid Films (2)

D. Schalch, A. Scharmann, A. Weiss, “Characterization of reactively sputtered BeO films,” Thin Solid Films 124, 351–358 (1985).
[CrossRef]

C. G. Ribbing, E. Wäckelgård, “Reststrahlen bands as property indicators for materials in dielectric coatings,” Thin Solid Films 206, 312–317 (1991).
[CrossRef]

Weatherwise (1)

C. F. Bohren, “An essay on dew,” Weatherwise 41, 226–231 (1988).
[CrossRef]

Other (14)

D. E. Campbell, H. E. Hagy, “Ceramic materials,” in CRC Practical Handbook of Materials Science, C. T. Lynch, ed. (CRC, Boca Raton, Fla., 1989), Table 6.2-2.

W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), Sec. 12.7.

Ref. 1, Table 6.2-4.

igor, WaveMetrics, Lake Oswego, Ore. 97035.

For example, F. Wooten, Optical Properties of Solids (Academic, New York, 1972), Sec. 3.6.

G. Laffay, G. Fadevilhe, F. Schambourgh, K. Keita, “Improvements in vehicle windows,” U.K. patent1,598,924 (August1977).

B. L. Adamson, “Fordonsruta av glas,” Swedish Patent7,609,860-7 (September1976).

S. Hörnfeldt, Swedish Transmission Research Institute AB, Ludvika, now with ABB Corporate Research, Västerås, Sweden (personal communication, 1987).

M. E. Thomas, R. J. Joseph, “Optical phonon characteristics of diamond, beryllia, and cubic zirconia,” in Window and Dome Technologies and Materials II, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1326, 120–126 (1990).
[CrossRef]

Our samples were regular products from the National Beryllia Division of General Ceramics Inc., Haskell, N.J., prepared from Brush & Wellman powder raw material.

For example, J. F. Snell, “Radiometry and photometry,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), Sec. 1.

Standard Procedure IEC 507, 2nd ed. (International Electric Committee, Geneva, Switzerland).

Tiefschwarz 9005, obtained from Mankiewicz Gebr through 3M Swedish AB, Bollstanäs Vägens 3, 19189 Sollenthna, Sweden.

D. F. Edwards, R. H. White, “Beryllium oxide (BeO),” in Handbook of Optical Constants II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 805–814.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the arrangement for spectral emittance measurements with an IR spectrophotometer: T. C., temperature controller for the heater. The blackbody reference was an aluminum sheet painted with a high emissive paint.22

Fig. 2
Fig. 2

Bulk specular reflectance spectra in the reststrahlen region for the BeO polycrystalline samples investigated in this research,19 prepared as indicated. Details are in the text.

Fig. 3
Fig. 3

Bulk specular reflectance spectra in the reststrahlen region for single-crystalline BeO, as quoted from Ref. 10. Note that the dip in the three versions of the reststrahlen bands in Fig. 2 cannot bo obtained as a linear combination of these two spectra.

Fig. 4
Fig. 4

Comparison of reflectance spectra from the five-oscillator fit (points) as described in the text, with the experimental tape-cast curve (continuous curve) obtained. Note the sharpness of the experimental reststrahlen band low-energy edge, which is not simulated by the model but is characteristic of the experimented spectra from tape-cast and pressed samples.

Fig. 5
Fig. 5

Near-normal specular reflectance spectra for one clean reference and four samples after accelerated aging corresponding to exposure in an industrial atmosphere.21 The amounts of nonsolvable and salt deposits are as indicated.

Fig. 6
Fig. 6

Emittance spectra for the five samples of Fig. 5 at 100 °C recorded as described in the text and shown in Fig. 1. Note the reproduction of the fine structure in the reflectance band in Fig. 5 and the level shifts as discussed in the text.

Tables (2)

Tables Icon

Table 1 Thermal Emittance Values for Polycrystalline BeO Samples as Received and after Exposure to Simulated Industrial Atmosphere as Described in the Text and in Ref. 21

Tables Icon

Table 2 BeO Oscillator Frequencies as Obtained by Various Authors and Techniquesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ɛ ( λ ) = 1 R ( λ ) ,
ε ¯ ( ω ) = ɛ s + j = 1 5 f j ω j 2 ω j 2 ω 2 + i ω γ j ,
ɛ ¯ ( 0 ) = ɛ s + 1 5 f j ω j 2 .

Metrics