Abstract

The operation of an airborne lidar intended for the detection of fish schools is numerically simulated by the Monte Carlo method. The calculations are performed for schools located at small depths in order to study the regularities in the shaping of the lidar return accurately. Three models of the phase function of scattering of laser radiation in sea water are used. The signals reflected from surface waters that contain a school of fish are determined as a function of the lidar parameters, light scattering and absorption coefficients in the water, stratification of light scattering layers, and fish-school depth. The results obtained can be used for interpreting the signals of the fish-detection lidar.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. B. Yudovich, A. A. Baral, Fish Detection for Harvesting (Food Industry House, Moscow, 1968), Chap. 1.
  2. K. S. Shifrin “Optical methods in spaceborne oceanology,” in Ocean Optics, A. S. Monin, ed. (Nauka, Moscow, 1983), Vol. 2, pp. 143–152.
  3. D. L. Murphree, C. D. Taylor, R. V. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAAJ. 12(12), 88–97.
  4. D. L. Murphree, R. V. McClendon, B. W. Ward, F. Glaum, “Mathematical modeling of fish detection with a scanning airborne laser, AIAAJ. 17(7), 1686–1692(1979).
    [CrossRef]
  5. G. I. Marchuk, B. M. Mikhailov, M. A. Nasaraliev, R. A. Darbinyan, B. A. Kargin, A. S. Yelepov, in The Monte Carlo Methods in Atmospheric Optics, G. I. Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.
  6. G. M. Krekov, G. A. Mikhailov, B. A. Kargin, “Simulation in optical sounding,” Izv. Vyssh. Uchebn. Zaved. Fiz. 9, 99–105 (1968).
  7. V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods for increasing the efficiency of numerical evaluation on the laser sounding of the atmosphere,” in Aspects of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1982), pp. 102–113.
  8. K. S. Shifrin, Introduction to Ocean Optics (Gidrometeoizdat, Leningrad, 1983).
  9. N. G. Yerlov, Sea Optics (Gidrometeoizdat, Leningrad, 1980).
  10. O. V. Kopelevich, K. S. Shifrin, “Modern concept of the optical properties of sea water,” in Atmospheric and Ocean Optics (Nauka, Moscow, 1981), pp. 4–49.
  11. G. M. Krekov, R. F. Rakhimov, Optical Models of Atmospheric Aerosols (Tomsk Affiliate of the Siberian Branch of the USSR Academy of Sciences, Tomsk, 1986).
  12. G. G. Neuimin, N. A. Sorokin, “The field of the radiation extinction coefficient in some regions of the Atlantic,” in Sea Optics (Nauka, Moscow, 1982), pp. 100–104.
  13. V. I. Voitov, A. I. Ioffe, D. A. Aksenov, “Simulation of hydro-optical fields,” in Sea Optics (Nauka, Moscow,1982), pp. 105–107.
  14. V. I. Burenkov, “Vertical profiles of optical characteristics,” in Ocean Optics. Applied Ocean Optics, A. S. Monin, ed. (Nauka, Moscow, 1983), Vol. 2, pp. 65–83.
  15. V. S. Shamanaev, I. E. Penner, “Airborne lidar sounding of the upper sea layer taking into account the small-angle approximation,” Opt. Atmos. 1, 110–116 (1988).
  16. I. E. Penner, V. S. Shamanaev, M. M. Krekova, “Detection of upper marine layer horizontal inhomogeneitics with an airborne lidar,” in Abstracts of Reports at the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1990), Vol. 2, pp. 13–15.

1988

V. S. Shamanaev, I. E. Penner, “Airborne lidar sounding of the upper sea layer taking into account the small-angle approximation,” Opt. Atmos. 1, 110–116 (1988).

1979

D. L. Murphree, R. V. McClendon, B. W. Ward, F. Glaum, “Mathematical modeling of fish detection with a scanning airborne laser, AIAAJ. 17(7), 1686–1692(1979).
[CrossRef]

1968

G. M. Krekov, G. A. Mikhailov, B. A. Kargin, “Simulation in optical sounding,” Izv. Vyssh. Uchebn. Zaved. Fiz. 9, 99–105 (1968).

Aksenov, D. A.

V. I. Voitov, A. I. Ioffe, D. A. Aksenov, “Simulation of hydro-optical fields,” in Sea Optics (Nauka, Moscow,1982), pp. 105–107.

Baral, A. A.

Yu. B. Yudovich, A. A. Baral, Fish Detection for Harvesting (Food Industry House, Moscow, 1968), Chap. 1.

Belov, V. V.

V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods for increasing the efficiency of numerical evaluation on the laser sounding of the atmosphere,” in Aspects of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1982), pp. 102–113.

Burenkov, V. I.

V. I. Burenkov, “Vertical profiles of optical characteristics,” in Ocean Optics. Applied Ocean Optics, A. S. Monin, ed. (Nauka, Moscow, 1983), Vol. 2, pp. 65–83.

Darbinyan, R. A.

G. I. Marchuk, B. M. Mikhailov, M. A. Nasaraliev, R. A. Darbinyan, B. A. Kargin, A. S. Yelepov, in The Monte Carlo Methods in Atmospheric Optics, G. I. Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

Glaum, F.

D. L. Murphree, R. V. McClendon, B. W. Ward, F. Glaum, “Mathematical modeling of fish detection with a scanning airborne laser, AIAAJ. 17(7), 1686–1692(1979).
[CrossRef]

Ioffe, A. I.

V. I. Voitov, A. I. Ioffe, D. A. Aksenov, “Simulation of hydro-optical fields,” in Sea Optics (Nauka, Moscow,1982), pp. 105–107.

Kargin, B. A.

G. M. Krekov, G. A. Mikhailov, B. A. Kargin, “Simulation in optical sounding,” Izv. Vyssh. Uchebn. Zaved. Fiz. 9, 99–105 (1968).

G. I. Marchuk, B. M. Mikhailov, M. A. Nasaraliev, R. A. Darbinyan, B. A. Kargin, A. S. Yelepov, in The Monte Carlo Methods in Atmospheric Optics, G. I. Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

Kopelevich, O. V.

O. V. Kopelevich, K. S. Shifrin, “Modern concept of the optical properties of sea water,” in Atmospheric and Ocean Optics (Nauka, Moscow, 1981), pp. 4–49.

Krekov, G. M.

G. M. Krekov, G. A. Mikhailov, B. A. Kargin, “Simulation in optical sounding,” Izv. Vyssh. Uchebn. Zaved. Fiz. 9, 99–105 (1968).

V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods for increasing the efficiency of numerical evaluation on the laser sounding of the atmosphere,” in Aspects of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1982), pp. 102–113.

G. M. Krekov, R. F. Rakhimov, Optical Models of Atmospheric Aerosols (Tomsk Affiliate of the Siberian Branch of the USSR Academy of Sciences, Tomsk, 1986).

Krekova, M. M.

I. E. Penner, V. S. Shamanaev, M. M. Krekova, “Detection of upper marine layer horizontal inhomogeneitics with an airborne lidar,” in Abstracts of Reports at the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1990), Vol. 2, pp. 13–15.

Marchuk, G. I.

G. I. Marchuk, B. M. Mikhailov, M. A. Nasaraliev, R. A. Darbinyan, B. A. Kargin, A. S. Yelepov, in The Monte Carlo Methods in Atmospheric Optics, G. I. Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

McClendon, R. V.

D. L. Murphree, R. V. McClendon, B. W. Ward, F. Glaum, “Mathematical modeling of fish detection with a scanning airborne laser, AIAAJ. 17(7), 1686–1692(1979).
[CrossRef]

D. L. Murphree, C. D. Taylor, R. V. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAAJ. 12(12), 88–97.

Mikhailov, B. M.

G. I. Marchuk, B. M. Mikhailov, M. A. Nasaraliev, R. A. Darbinyan, B. A. Kargin, A. S. Yelepov, in The Monte Carlo Methods in Atmospheric Optics, G. I. Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

Mikhailov, G. A.

G. M. Krekov, G. A. Mikhailov, B. A. Kargin, “Simulation in optical sounding,” Izv. Vyssh. Uchebn. Zaved. Fiz. 9, 99–105 (1968).

Murphree, D. L.

D. L. Murphree, R. V. McClendon, B. W. Ward, F. Glaum, “Mathematical modeling of fish detection with a scanning airborne laser, AIAAJ. 17(7), 1686–1692(1979).
[CrossRef]

D. L. Murphree, C. D. Taylor, R. V. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAAJ. 12(12), 88–97.

Nasaraliev, M. A.

G. I. Marchuk, B. M. Mikhailov, M. A. Nasaraliev, R. A. Darbinyan, B. A. Kargin, A. S. Yelepov, in The Monte Carlo Methods in Atmospheric Optics, G. I. Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

Neuimin, G. G.

G. G. Neuimin, N. A. Sorokin, “The field of the radiation extinction coefficient in some regions of the Atlantic,” in Sea Optics (Nauka, Moscow, 1982), pp. 100–104.

Penner, I. E.

V. S. Shamanaev, I. E. Penner, “Airborne lidar sounding of the upper sea layer taking into account the small-angle approximation,” Opt. Atmos. 1, 110–116 (1988).

I. E. Penner, V. S. Shamanaev, M. M. Krekova, “Detection of upper marine layer horizontal inhomogeneitics with an airborne lidar,” in Abstracts of Reports at the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1990), Vol. 2, pp. 13–15.

Rakhimov, R. F.

G. M. Krekov, R. F. Rakhimov, Optical Models of Atmospheric Aerosols (Tomsk Affiliate of the Siberian Branch of the USSR Academy of Sciences, Tomsk, 1986).

Shamanaev, V. S.

V. S. Shamanaev, I. E. Penner, “Airborne lidar sounding of the upper sea layer taking into account the small-angle approximation,” Opt. Atmos. 1, 110–116 (1988).

I. E. Penner, V. S. Shamanaev, M. M. Krekova, “Detection of upper marine layer horizontal inhomogeneitics with an airborne lidar,” in Abstracts of Reports at the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1990), Vol. 2, pp. 13–15.

Shifrin, K. S.

O. V. Kopelevich, K. S. Shifrin, “Modern concept of the optical properties of sea water,” in Atmospheric and Ocean Optics (Nauka, Moscow, 1981), pp. 4–49.

K. S. Shifrin, Introduction to Ocean Optics (Gidrometeoizdat, Leningrad, 1983).

K. S. Shifrin “Optical methods in spaceborne oceanology,” in Ocean Optics, A. S. Monin, ed. (Nauka, Moscow, 1983), Vol. 2, pp. 143–152.

Sorokin, N. A.

G. G. Neuimin, N. A. Sorokin, “The field of the radiation extinction coefficient in some regions of the Atlantic,” in Sea Optics (Nauka, Moscow, 1982), pp. 100–104.

Taylor, C. D.

D. L. Murphree, C. D. Taylor, R. V. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAAJ. 12(12), 88–97.

Titov, G. A.

V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods for increasing the efficiency of numerical evaluation on the laser sounding of the atmosphere,” in Aspects of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1982), pp. 102–113.

Voitov, V. I.

V. I. Voitov, A. I. Ioffe, D. A. Aksenov, “Simulation of hydro-optical fields,” in Sea Optics (Nauka, Moscow,1982), pp. 105–107.

Ward, B. W.

D. L. Murphree, R. V. McClendon, B. W. Ward, F. Glaum, “Mathematical modeling of fish detection with a scanning airborne laser, AIAAJ. 17(7), 1686–1692(1979).
[CrossRef]

Yelepov, A. S.

G. I. Marchuk, B. M. Mikhailov, M. A. Nasaraliev, R. A. Darbinyan, B. A. Kargin, A. S. Yelepov, in The Monte Carlo Methods in Atmospheric Optics, G. I. Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

Yerlov, N. G.

N. G. Yerlov, Sea Optics (Gidrometeoizdat, Leningrad, 1980).

Yudovich, Yu. B.

Yu. B. Yudovich, A. A. Baral, Fish Detection for Harvesting (Food Industry House, Moscow, 1968), Chap. 1.

AIAAJ.

D. L. Murphree, C. D. Taylor, R. V. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAAJ. 12(12), 88–97.

D. L. Murphree, R. V. McClendon, B. W. Ward, F. Glaum, “Mathematical modeling of fish detection with a scanning airborne laser, AIAAJ. 17(7), 1686–1692(1979).
[CrossRef]

Izv. Vyssh. Uchebn. Zaved. Fiz.

G. M. Krekov, G. A. Mikhailov, B. A. Kargin, “Simulation in optical sounding,” Izv. Vyssh. Uchebn. Zaved. Fiz. 9, 99–105 (1968).

Opt. Atmos.

V. S. Shamanaev, I. E. Penner, “Airborne lidar sounding of the upper sea layer taking into account the small-angle approximation,” Opt. Atmos. 1, 110–116 (1988).

Other

I. E. Penner, V. S. Shamanaev, M. M. Krekova, “Detection of upper marine layer horizontal inhomogeneitics with an airborne lidar,” in Abstracts of Reports at the Fifteenth International Laser Radar Conference (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1990), Vol. 2, pp. 13–15.

G. I. Marchuk, B. M. Mikhailov, M. A. Nasaraliev, R. A. Darbinyan, B. A. Kargin, A. S. Yelepov, in The Monte Carlo Methods in Atmospheric Optics, G. I. Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.

Yu. B. Yudovich, A. A. Baral, Fish Detection for Harvesting (Food Industry House, Moscow, 1968), Chap. 1.

K. S. Shifrin “Optical methods in spaceborne oceanology,” in Ocean Optics, A. S. Monin, ed. (Nauka, Moscow, 1983), Vol. 2, pp. 143–152.

V. V. Belov, G. M. Krekov, G. A. Titov, “Some methods for increasing the efficiency of numerical evaluation on the laser sounding of the atmosphere,” in Aspects of Remote Sensing of the Atmosphere, V. E. Zuev, ed. (Institute of Atmospheric Optics, Siberian Branch of the USSR Academy of Sciences, Tomsk, 1982), pp. 102–113.

K. S. Shifrin, Introduction to Ocean Optics (Gidrometeoizdat, Leningrad, 1983).

N. G. Yerlov, Sea Optics (Gidrometeoizdat, Leningrad, 1980).

O. V. Kopelevich, K. S. Shifrin, “Modern concept of the optical properties of sea water,” in Atmospheric and Ocean Optics (Nauka, Moscow, 1981), pp. 4–49.

G. M. Krekov, R. F. Rakhimov, Optical Models of Atmospheric Aerosols (Tomsk Affiliate of the Siberian Branch of the USSR Academy of Sciences, Tomsk, 1986).

G. G. Neuimin, N. A. Sorokin, “The field of the radiation extinction coefficient in some regions of the Atlantic,” in Sea Optics (Nauka, Moscow, 1982), pp. 100–104.

V. I. Voitov, A. I. Ioffe, D. A. Aksenov, “Simulation of hydro-optical fields,” in Sea Optics (Nauka, Moscow,1982), pp. 105–107.

V. I. Burenkov, “Vertical profiles of optical characteristics,” in Ocean Optics. Applied Ocean Optics, A. S. Monin, ed. (Nauka, Moscow, 1983), Vol. 2, pp. 65–83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Time behavior of the reflected signal P(h = ct/2) for H0 = 200 m and σ = 0.3 m−1. Curve (a) shows the total signal for Wf = 0.1 and 1/2φd = 1.7 mrad; curves (b) and (c) show P(h) coming from the near-surface water layer for (b) h0 = 5 m and (c) 10 m. Solid curves shows the results obtained for Wf = 0.1, and the dashed curves show those obtained for Wf = 0.05. 1/2φd = 1.7 (1),3.5 (2), 7 (3), and 11 (4) mrad.

Fig. 2
Fig. 2

Results of calculations with the scattering-phase function models g2(θ) (on the left) and g3(θ) (on the right) for a = 0.3 m−1 and Wf = 0.1. The lidar specifications are the same as in Fig. 1. The dashed curves show the calculated results for Δh = 15 m.

Fig. 3
Fig. 3

Effect of hydrosol concentration in the sea water on P(t). The calculations were performed with g1(θ) for Wf = 0.1, σ(h) = 0.3 (1), 0.2 (2), and 0.1 (3) m−1, and 1/2φd = 1.7 mrad. Curve 4 shows the profile of σ(h) used for calculations of curves 5 and 6. Curve 7 shows the profile of σ(h) used for calculations of curves 8 and 9. 1/2φd = 1.7 (curves 5 and 6) and 3.5 (curves 8 and 9) mrad.

Fig. 4
Fig. 4

Results of the calculation of P(h) in the case in which a fish school for harvesting is located in the layer with enhanced content of the phytoplankton with σ(h) = 0.37 m−1 and W = 0.6. Outside this layer, σ(h) = 0.3 m−1 and W = 0.815. 1/2φd = 1.7 (1), 3.5 (2), 7 (3), and 11 (4) mrad. Curves 5–7 show P(t) in the case in which the layer of hydrosol inversion exists with σ(h) = 0.6 m−1 and Δh = 5 m. Outside this layer, σ(h) = 0.3 m−1. 1/2φd = 3.5 (5), 7 (6), and 11 (7) mrad.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = P s ( t ) + P m ( t ) + P rs ( t ) + P rf ( t )
ξ = i = 1 N w i exp [ - τ ( r i , r * ) ] g ( Ω l , Ω * ) r i - r * 2 Δ ( t k ) Δ ( Ω m ) .
σ Σ = σ sw + σ aw + σ sh + c ch κ ch + c y κ y ,
f ( r ) = { γ = 2.65 , n = 1.15 at r 0.5 μ m γ = 4 , n = 1.15 at 0.5 r 1.5 μ m , γ = 4 n = 1.05 at r 1.5 μ m f ( r ) = { γ = 3 , n = 1.15 at r 1.5 μ m γ = 3 , n = 1.05 at r 1.5 μ m , f ( r ) = { γ = 4.5 , n = 1.15 at r 1.0 μ m γ = 3 , n = 1.05 at r 1 μ m .

Metrics