Abstract

A new scanning airborne-aerosol lidar system that has the potential to be a valuable atmospheric remote-sensing tool has been developed. The system has the ability to scan both parallel and perpendicular to an aircraft’s flight path, and this ability permits both the three-dimensional rendering of the aerosol structure below the aircraft and the measurement of aerosol extinction and optical depth. The system has been integrated into a NASA P-3 aircraft and during a recent flight was used to acquire excellent data with both scanning modes. The system design, the application of the across-track scanning data to the study of the atmospheric boundary layer, and the computation of optical depth derived from along-track scan data are reported.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parameterized entrainment methods of mixed layer growth rate,” J. Clim. Appl. Meteorol. 23, 247–266 (1984).
    [CrossRef]
  2. J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
    [CrossRef]
  3. K. E. Kunkel, E. W. Eloranta, S. T. Shopley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
    [CrossRef]
  4. Y. Sasano, H. Shimizu, N. Takeuchi, “Convective cell structures revealed by a Mie laser radar observation and image data processing,” Appl. Opt. 21, 3166–3169 (1982).
    [CrossRef] [PubMed]
  5. S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Chim. Appl. Meteorol. 24, 806–821 (1985).
    [CrossRef]
  6. R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary-layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
    [CrossRef]
  7. R. Boers, S. H. Melfi, S. P. Palm, “Cold-air outbreak during GALE: lidar observations and modeling of boundary layer dynamics,” Mon. Weather Rev. 119, 1132–1150 (1991).
    [CrossRef]
  8. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
    [CrossRef]
  9. G. S. Kent, “Deduction of aerosol concentrations from 1.06-μm lidar measurements,” Appl. Opt. 17, 3763–3773 (1978).
    [CrossRef] [PubMed]

1991

R. Boers, S. H. Melfi, S. P. Palm, “Cold-air outbreak during GALE: lidar observations and modeling of boundary layer dynamics,” Mon. Weather Rev. 119, 1132–1150 (1991).
[CrossRef]

1987

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary-layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
[CrossRef]

1985

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Chim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

1984

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parameterized entrainment methods of mixed layer growth rate,” J. Clim. Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

1982

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Y. Sasano, H. Shimizu, N. Takeuchi, “Convective cell structures revealed by a Mie laser radar observation and image data processing,” Appl. Opt. 21, 3166–3169 (1982).
[CrossRef] [PubMed]

1980

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

1978

1977

K. E. Kunkel, E. W. Eloranta, S. T. Shopley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

Abshire, N. L.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Boers, R.

R. Boers, S. H. Melfi, S. P. Palm, “Cold-air outbreak during GALE: lidar observations and modeling of boundary layer dynamics,” Mon. Weather Rev. 119, 1132–1150 (1991).
[CrossRef]

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary-layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
[CrossRef]

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parameterized entrainment methods of mixed layer growth rate,” J. Clim. Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

Chadwick, R. B.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Chou, S.-H.

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Chim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Coulter, R. L.

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parameterized entrainment methods of mixed layer growth rate,” J. Clim. Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

Decker, M. T.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Eloranta, E. W.

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parameterized entrainment methods of mixed layer growth rate,” J. Clim. Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

K. E. Kunkel, E. W. Eloranta, S. T. Shopley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

Herman, B. M.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Hooke, W. H.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Kaimal, J. C.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Kent, G. S.

Kropfli, R. A.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Kunkel, K. E.

K. E. Kunkel, E. W. Eloranta, S. T. Shopley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

Melfi, S. H.

R. Boers, S. H. Melfi, S. P. Palm, “Cold-air outbreak during GALE: lidar observations and modeling of boundary layer dynamics,” Mon. Weather Rev. 119, 1132–1150 (1991).
[CrossRef]

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary-layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
[CrossRef]

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Chim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Neff, W. D.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Palm, S. P.

R. Boers, S. H. Melfi, S. P. Palm, “Cold-air outbreak during GALE: lidar observations and modeling of boundary layer dynamics,” Mon. Weather Rev. 119, 1132–1150 (1991).
[CrossRef]

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Chim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Pasqualucci, F.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Sasano, Y.

Shimizu, H.

Shopley, S. T.

K. E. Kunkel, E. W. Eloranta, S. T. Shopley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

Spinhirne, J. D.

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Chim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Takeuchi, N.

Appl. Opt.

Boundary-Layer Meteorol.

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary-layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
[CrossRef]

J. Appl. Meteorol.

J. C. Kaimal, N. L. Abshire, R. B. Chadwick, M. T. Decker, W. H. Hooke, R. A. Kropfli, W. D. Neff, F. Pasqualucci, “Estimating the depth of the daytime convective boundary layer,” J. Appl. Meteorol. 21, 1123–1129 (1982).
[CrossRef]

K. E. Kunkel, E. W. Eloranta, S. T. Shopley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

J. Chim. Appl. Meteorol.

S. H. Melfi, J. D. Spinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Chim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

J. Clim. Appl. Meteorol.

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parameterized entrainment methods of mixed layer growth rate,” J. Clim. Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

Mon. Weather Rev.

R. Boers, S. H. Melfi, S. P. Palm, “Cold-air outbreak during GALE: lidar observations and modeling of boundary layer dynamics,” Mon. Weather Rev. 119, 1132–1150 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layout of the LASAL system components within the NASA P-3 aircraft. The telescope, scanning mirror, and motors occupy the bomb bay of the aircraft, which is shown in the side-view (lower) sketch. The data system, laser, and associated transmit optics are housed within the aircraft cabin. Navigation (Nav.), system (sys.).

Fig. 2
Fig. 2

Detailed drawing of the LASAL scan drive assembly that shows the drive motor, drive shaft, and supporting structure. The scanning mirror attaches to the drive shaft as shown in Fig. 3. The scan drive assembly enables across-track scanning to occur at rates up to 100 deg/s.

Fig. 3
Fig. 3

LASAL tilt drive and mirror assembly. The large scanning mirror (91.44 cm × 60.96 cm) is mounted to the yoke at two points as shown. The linear tilt actuator permits one to perform along-track scanning and precise tracking of air parcels, as described in Section 2.

Fig. 4
Fig. 4

LASAL-measured backscatter for one complete across-track scanning sequence displayed in color-coded image form. The horizontal bars on either side of the figure depict the region that is searched by the algorithm to resolve the MABL top.

Fig. 5
Fig. 5

Three-dimensional surface plot of the top of the planetary boundary layer derived from LASAL data. Superimposed on the surface is the track of the laser beam. Data between the scan pattern have been filled in with the technique described in Subsection 3.A.1.

Fig. 6
Fig. 6

Three-dimensional rendering of the data shown in Fig. 5 with lighting and surface-texture effects. The data are also color coded according to height as described in Subsection 3.A.1.

Fig. 7
Fig. 7

LASAL-measured backscatter for one tracking sequence. The tracking sequence begins when the aircraft is at zero on the distance scale and ends when it reaches 1500 m. The height of the tracking volume is approximately 950 m, and it is the area in the figure in which the image appears to converge.

Fig. 8
Fig. 8

Plotted values of the log of the corrected return signal as a function of 2-times the secant of the lidar viewing angle θ for one tracking sequence. The slope of the linear least-squares best-fit line is a measure of the optical thickness at the laser wavelength for the air mass between the aircraft and the tracking height (2750–950 m).

Tables (1)

Tables Icon

Table 1 Optical Thickness and Integrated Backscatter-to-Extinction Ratioa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H i j = k = 1 18 h k w k ,
w k = ( d k 200 ) - 1.5
P ( z t , θ ) = E C β ( z t ) ( z 0 - z t ) 2 sec 2 θ exp [ - 2 sec θ z 0 z t σ ( z ) d z ] ,
C E = P ( 2.0 , θ ) sec 2 θ ( z 0 - 2.0 ) 2 β r T r 2 ,
S 1 = ln [ ( z 0 - z t ) 2 sec 2 θ 1 P ( z t , θ 1 ) E C ] = ln [ β ( z t ) ] - 2 sec θ 1 z 0 z t σ ( z ) d z .
S 2 = ln [ β ( z t ) ] - 2 sec θ 2 z 0 z t σ ( z ) d z .
S 1 - S 2 = 2 z 0 z t σ ( z ) d z [ sec θ 2 - sec θ 1 ] ,
z 0 z t σ ( z ) d z = τ = S 1 - S 2 2 ( sec θ 2 - sec θ 1 ) .

Metrics