Abstract

The effects of disturbances of the flow pattern in front of the fiber facet of a fiber-coupled self-mixing diode-laser Doppler velocimeter system are investigated. This was done by comparing measurements and calculations of the Doppler frequency spectrum with the expected values. The calculated Doppler spectrum was obtained from the calculation of light scattered (with or without Doppler shift) by the moving particles in front of the fiber facet. The velocity profile of the particles was calculated with a finite-element method. Measurements were done with water (with polystyrene spheres) and whole blood as the samples. Good agreement between measurements and calculations were obtained. The velocimeter was modeled as a five-mirror setup. The reflectivity of the fiber facet closest to the laser turns out to have the most influence on the sensitivity and stability of the laser. Direct reflection of unwanted light back into the laser cavity was avoided by placing a glass plate in front of the fiber. Design considerations are presented.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
    [CrossRef]
  2. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R: Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
    [CrossRef] [PubMed]
  3. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988), Chap. 9.
    [CrossRef]
  4. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
    [CrossRef]
  5. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
    [CrossRef]
  6. D. M. Clunie, H. H. Rock, “The laser feedback interferometer,” J. Sci. Instrum. 41, 489–492 (1964).
    [CrossRef]
  7. W. J. Burke, M. Ettenberg, H. Kressel, “Optical feedback effects in cw injection lasers,” Appl. Opt. 17, 2233–2236 (1978).
    [CrossRef] [PubMed]
  8. G. Beheim, K. Fritsch, “Range finding using frequency-modulated laser diodes,” Appl. Opt. 25, 1439–1442 (1986).
    [CrossRef] [PubMed]
  9. P. de Groot, G. Gallatin, S. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef] [PubMed]
  10. S. Kyuma, M. Numoshita, T. Hakayama, “Fiber-optic laser Doppler velocimeter using an external cavity semiconductor laser,” Appl. Phys. Lett. 45, 1005–1008 (1984).
    [CrossRef]
  11. P. de Groot, “Use of a multimode short external cavity laser diode for absolute distance interferometry,” Appl. Opt. 32, 4193–4198 (1993).
    [CrossRef] [PubMed]
  12. S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 3–13 (1991).
  13. V. S. Lee, L. Tarassenko, “Absorption and multiple scattering by suspension of aligned red blood cells,” J. Opt. Soc. Am. A 8, 1135–1141 (1991).
    [CrossRef] [PubMed]
  14. J. M. Steinke, A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A 5, 813–822 (1988).
    [CrossRef] [PubMed]
  15. H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
    [CrossRef] [PubMed]
  16. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelength: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558.
    [PubMed]
  17. A. Segal, Sepran User Manual, Programmers Guide and Standard Problems (Ingenieursburo Sepra, Leidschendam, The Netherlands, 1990).
  18. C. Cuvalier, A. Segal, A. A. van Steenhoven, Finite Element Method and Navier–Stokes Equation (Reidel, Dordrecht, The Netherlands, 1986).
    [CrossRef]
  19. S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974), p. 37.
  20. D. A. McDonald, Blood Flow in Arteries (Arnold, London, 1974), p. 89.
  21. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), Chap. 7.
  22. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
    [CrossRef] [PubMed]
  23. J. A. Crucio, C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951).
    [CrossRef]
  24. R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).
    [CrossRef] [PubMed]
  25. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
    [CrossRef] [PubMed]
  26. F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications (U. Manchester Press, Manchester, England, 1989), IL3.1–IL3.17.
  27. K. Mito, N. Yonezu, H. Ikeda, M. Sumi, S. Shinohara, “Blood flow measurement by self-mixing semiconductor laser Doppler velocimeter,” presented at the 30th Annual Conference of the Society of Instruments of Control Engineers, Yonezawa, Japan, 17–19 July 1991.
  28. K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990).
    [CrossRef] [PubMed]

1993 (1)

1992 (3)

1991 (1)

1990 (2)

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990).
[CrossRef] [PubMed]

1988 (3)

1987 (1)

1986 (1)

1984 (2)

S. Kyuma, M. Numoshita, T. Hakayama, “Fiber-optic laser Doppler velocimeter using an external cavity semiconductor laser,” Appl. Phys. Lett. 45, 1005–1008 (1984).
[CrossRef]

A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

1980 (1)

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

1978 (1)

1964 (1)

D. M. Clunie, H. H. Rock, “The laser feedback interferometer,” J. Sci. Instrum. 41, 489–492 (1964).
[CrossRef]

1951 (1)

Aarnoudse, J. G.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R: Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelength: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558.
[PubMed]

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications (U. Manchester Press, Manchester, England, 1989), IL3.1–IL3.17.

Acket, A.

A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Beheim, G.

Bonner, R. F.

Burke, W. J.

Charm, S. E.

S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974), p. 37.

Clunie, D. M.

D. M. Clunie, H. H. Rock, “The laser feedback interferometer,” J. Sci. Instrum. 41, 489–492 (1964).
[CrossRef]

Crucio, J. A.

Cuvalier, C.

C. Cuvalier, A. Segal, A. A. van Steenhoven, Finite Element Method and Navier–Stokes Equation (Reidel, Dordrecht, The Netherlands, 1986).
[CrossRef]

Dassel, A. C. M.

de Groot, P.

de Mul, F. F. M.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R: Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelength: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558.
[PubMed]

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications (U. Manchester Press, Manchester, England, 1989), IL3.1–IL3.17.

den Boef, A. J.

A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Ettenberg, M.

Fritsch, K.

Gallatin, G.

Graaff, R.

Graaff, R:

Greve, J.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R: Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelength: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558.
[PubMed]

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications (U. Manchester Press, Manchester, England, 1989), IL3.1–IL3.17.

Hakayama, T.

S. Kyuma, M. Numoshita, T. Hakayama, “Fiber-optic laser Doppler velocimeter using an external cavity semiconductor laser,” Appl. Phys. Lett. 45, 1005–1008 (1984).
[CrossRef]

Havlin, S.

Hermsen, R. G. A. M.

Hiramatsu, O.

K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990).
[CrossRef] [PubMed]

Ikeda, H.

K. Mito, N. Yonezu, H. Ikeda, M. Sumi, S. Shinohara, “Blood flow measurement by self-mixing semiconductor laser Doppler velocimeter,” presented at the 30th Annual Conference of the Society of Instruments of Control Engineers, Yonezawa, Japan, 17–19 July 1991.

Jacques, S. L.

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 3–13 (1991).

Jentink, H. W.

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications (U. Manchester Press, Manchester, England, 1989), IL3.1–IL3.17.

Kajiya, F.

K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990).
[CrossRef] [PubMed]

Keijzer, M.

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 3–13 (1991).

Kobayashi, K.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Koelink, M. H.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R: Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelength: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558.
[PubMed]

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications (U. Manchester Press, Manchester, England, 1989), IL3.1–IL3.17.

Kressel, H.

Kurland, G. S.

S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974), p. 37.

Kyuma, S.

S. Kyuma, M. Numoshita, T. Hakayama, “Fiber-optic laser Doppler velocimeter using an external cavity semiconductor laser,” Appl. Phys. Lett. 45, 1005–1008 (1984).
[CrossRef]

Lang, R.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Lee, V. S.

Lenstra, D.

A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Macomber, S.

McDonald, D. A.

D. A. McDonald, Blood Flow in Arteries (Arnold, London, 1974), p. 89.

Mito, K.

K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990).
[CrossRef] [PubMed]

K. Mito, N. Yonezu, H. Ikeda, M. Sumi, S. Shinohara, “Blood flow measurement by self-mixing semiconductor laser Doppler velocimeter,” presented at the 30th Annual Conference of the Society of Instruments of Control Engineers, Yonezawa, Japan, 17–19 July 1991.

Nossal, R.

Numoshita, M.

S. Kyuma, M. Numoshita, T. Hakayama, “Fiber-optic laser Doppler velocimeter using an external cavity semiconductor laser,” Appl. Phys. Lett. 45, 1005–1008 (1984).
[CrossRef]

Ogasawara, Y.

K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990).
[CrossRef] [PubMed]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988), Chap. 9.
[CrossRef]

Petty, C. C.

Rock, H. H.

D. M. Clunie, H. H. Rock, “The laser feedback interferometer,” J. Sci. Instrum. 41, 489–492 (1964).
[CrossRef]

Scholten, F. G.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

Segal, A.

C. Cuvalier, A. Segal, A. A. van Steenhoven, Finite Element Method and Navier–Stokes Equation (Reidel, Dordrecht, The Netherlands, 1986).
[CrossRef]

A. Segal, Sepran User Manual, Programmers Guide and Standard Problems (Ingenieursburo Sepra, Leidschendam, The Netherlands, 1990).

Shepherd, A. P.

Shinohara, S.

K. Mito, N. Yonezu, H. Ikeda, M. Sumi, S. Shinohara, “Blood flow measurement by self-mixing semiconductor laser Doppler velocimeter,” presented at the 30th Annual Conference of the Society of Instruments of Control Engineers, Yonezawa, Japan, 17–19 July 1991.

Slot, M.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R: Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

Steinke, J. M.

Sumi, M.

K. Mito, N. Yonezu, H. Ikeda, M. Sumi, S. Shinohara, “Blood flow measurement by self-mixing semiconductor laser Doppler velocimeter,” presented at the 30th Annual Conference of the Society of Instruments of Control Engineers, Yonezawa, Japan, 17–19 July 1991.

Tarassenko, L.

Tsujiokam, K.

K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990).
[CrossRef] [PubMed]

Tuynman, F. H. B.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), Chap. 7.

van Steenhoven, A. A.

C. Cuvalier, A. Segal, A. A. van Steenhoven, Finite Element Method and Navier–Stokes Equation (Reidel, Dordrecht, The Netherlands, 1986).
[CrossRef]

Verbeek, B. H.

A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Weijers, A. L.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

Weiss, G. H.

Yonezu, N.

K. Mito, N. Yonezu, H. Ikeda, M. Sumi, S. Shinohara, “Blood flow measurement by self-mixing semiconductor laser Doppler velocimeter,” presented at the 30th Annual Conference of the Society of Instruments of Control Engineers, Yonezawa, Japan, 17–19 July 1991.

Appl. Opt. (9)

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R: Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

W. J. Burke, M. Ettenberg, H. Kressel, “Optical feedback effects in cw injection lasers,” Appl. Opt. 17, 2233–2236 (1978).
[CrossRef] [PubMed]

G. Beheim, K. Fritsch, “Range finding using frequency-modulated laser diodes,” Appl. Opt. 25, 1439–1442 (1986).
[CrossRef] [PubMed]

P. de Groot, G. Gallatin, S. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
[CrossRef] [PubMed]

P. de Groot, “Use of a multimode short external cavity laser diode for absolute distance interferometry,” Appl. Opt. 32, 4193–4198 (1993).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelength: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558.
[PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Kyuma, M. Numoshita, T. Hakayama, “Fiber-optic laser Doppler velocimeter using an external cavity semiconductor laser,” Appl. Phys. Lett. 45, 1005–1008 (1984).
[CrossRef]

Heart Vessels (1)

K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Sci. Instrum. (1)

D. M. Clunie, H. H. Rock, “The laser feedback interferometer,” J. Sci. Instrum. 41, 489–492 (1964).
[CrossRef]

Med. Biol. Eng. Comp. (1)

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992).
[CrossRef]

Other (9)

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications (U. Manchester Press, Manchester, England, 1989), IL3.1–IL3.17.

K. Mito, N. Yonezu, H. Ikeda, M. Sumi, S. Shinohara, “Blood flow measurement by self-mixing semiconductor laser Doppler velocimeter,” presented at the 30th Annual Conference of the Society of Instruments of Control Engineers, Yonezawa, Japan, 17–19 July 1991.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988), Chap. 9.
[CrossRef]

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 3–13 (1991).

A. Segal, Sepran User Manual, Programmers Guide and Standard Problems (Ingenieursburo Sepra, Leidschendam, The Netherlands, 1990).

C. Cuvalier, A. Segal, A. A. van Steenhoven, Finite Element Method and Navier–Stokes Equation (Reidel, Dordrecht, The Netherlands, 1986).
[CrossRef]

S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974), p. 37.

D. A. McDonald, Blood Flow in Arteries (Arnold, London, 1974), p. 89.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Simplified model for a semiconductor laser with external optical feedback. Only the external reflection from a moving object is taken into account.

Fig. 2
Fig. 2

Compound cavity model for a fiber-coupled semiconductor laser with external optical feedback and reflection at a moving object.

Fig. 3
Fig. 3

Influence of a glass plate in front of the fiber facet, coupled to the facet with index-matching material, on the performance of the velocimeter. The sample was a rotating wheel covered with white paper (velocity 4 mm/s). (a) without fiber, (b) with fiber but without glass plate, (c) with fiber and glass plate (8.9 mm thick). In (a)–(c) the top curve is the frequency spectrum, and the bottom curve is the noise, and the middle curves in (a) and (c) are the higher harmonics that are due to the self-mixing mechanism.

Fig. 4
Fig. 4

Schematic drawing of the setup to eliminate the reflection of laser light from the first fiber facet into the laser cavity. The reflection at the glass plate is not imaged properly into the laser cavity because the plane of reflection is not in focus. The index-matching oil drop reduces reflection at the glass–fiber interface.

Fig. 5
Fig. 5

(a) Length and width parameters L′ and D, indicating the region where the axial velocity component in front of the fiber facet becomes less than 95% of the undisturbed value. (b) and (c) Results of flow profile calculations around a fiber tip of 125 μm diameter, for blood and for water with polystyrene spheres, with velocity directions toward and from the fiber tip: (b) length parameter L′; (c) width parameter D [see text and Fig. (a)], +, blood, directed from the fiber; △, water, toward fiber; ○, blood, toward fiber. In (a)–(c) similar scattering characteristics were taken for water and blood: blood, σs = 15 μm2, g = 0.98, σa,, = 0.04 μm2, σs′ = 0.3 μm2, concentration 5 × 10−3 μm−3, ∑s′ = 1.5 mm−1; water with polystyrene spheres (diameter 1.43 μm), σs = 5.57 μm2, g = 0.919 (according to Mie theory), σs′ = 0.45 μm2, concentration 2.8 × 10−3 μm3, ∑s′ = 1.26 mm−1. The sepran mesh size at the fiber facet was 6 μm and was gradually increased, approximately with √x (x being the distance from the fiber).

Fig. 6
Fig. 6

Calculated signal spectrum in the case of a flow with polystyrene spheres directed toward the fiber, without a lens in front of the fiber (upper curve) and with a lens in front of the fiber (lower curve).

Fig. 7
Fig. 7

Calculated signal spectrum in the case of a blood flow directed away from the fiber (upper curve) and toward the fiber (lower curve). Both calculations are performed without a lens in front of the fiber.

Fig. 8
Fig. 8

Calculated signal spectrum in case of a blood flow directed toward the fiber, without (upper curve) and with (lower curve) a lens on the fiber facet.

Fig. 9
Fig. 9

Comparison of expected [solid curve; from measured velocities and use of Eq. (19)] and calculated frequencies from Doppler light scattering with the calculated velocity profiles: △, blood, flow directed from the fiber; +, polystyrene spheres in water, flow toward the fiber; ○, blood, flow toward fiber.

Fig. 10
Fig. 10

Schematic drawing of the velocimeter setup. The length of the fiber in the tube is approximately 4 cm.

Fig. 11
Fig. 11

Measured signal spectrum (upper curves) and zero flow spectrum (lower curves) in the case of a flow with polystyrene spheres directed (a) away from the fiber and (b) toward the fiber.

Fig. 12
Fig. 12

Measured cutoff frequency of the signal spectrum versus the maximum velocity in the flow with polystyrene spheres (symbols). The flow is directed (a) away from the fiber and (b) toward the fiber. In (a) and (b) the upper curve denotes the expected maximum Doppler shift for a Poiseuille profile, and the lower curve denotes the maximum Doppler shift for a uniform profile. For the maximum velocity on the horizontal axis a Poiseuille profile was assumed.

Fig. 13
Fig. 13

Measured signal spectrum (upper curves) and zero flow spectrum (lower curves) in the case of a blood flow in vitro, directed (a) away from the fiber and (b) toward the fiber.

Fig. 14
Fig. 14

Measured cutoff frequency of the signal spectrum versus the maximum velocity in the blood flow in the in vitro experiments (symbols). The flow is directed (a) away from the fiber and (b) toward the fiber. In (a) and (b) the upper and lower lines denote the maximum Doppler shifts with assumptions similar to those in Fig. 12. For the maximum velocity on the horizontal axis a Poiseuille profile was assumed.

Fig. 15
Fig. 15

Comparison of this laser Doppler (LD) instrument, an electromagnetic (EM) instrument, and an ultrasound (US) velocimeter for blood flow in arteries. The measurements were performed with 1-L whole blood (with a drop of heparin as the anticoagulator) in a flow system as described above. EM probe: scalar; US probe, transonic. The accuracy for all three instruments was <5%. poiss, Poiseuille.

Fig. 16
Fig. 16

Typical result of an intravenous flow measurement in the arteria pulmonalis of a healthy calf. Dashed curve, Doppler spectrum; solid curve, zero velocity (occlusion).

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

r 2 ( ν ) = r 2 s + η f 1 ( 1 - r 2 s 2 ) r f 1 exp ( - i 2 π ν τ f 1 ) + η f 2 ( 1 - r f 1 2 ) ( 1 - r 2 s 2 ) r f 2 exp ( - i 2 π ν τ f 2 ) + η ext ( 1 - r f 2 2 ) ( 1 - r f 1 2 ) ( 1 - r 2 s 2 ) r 2 ext × exp ( - i 2 π ν τ ext ) ,
τ ext = 2 [ L f 1 + ( L f 2 - L f 1 ) n f + ( L ext - L f 2 ) n m ] / c ,
r 2 ( ν ) = r 2 exp ( - i ϕ r ) ,
2 β L + ϕ r = 2 π m ,
4 π n c ν L / c + ϕ r = 2 π m .
r 1 r 2 exp [ ( g c - α s ) L ] = 1 ,
κ f 1 = η f 1 r f 1 ( 1 - r 2 s 2 ) / r 2 s , κ f 2 = η f 2 r f 2 ( 1 - r f 1 2 ) ( 1 - r 2 s 2 ) / r 2 s , κ ext = η ext r ext ( 1 - r f 2 2 ) ( 1 - r f 1 2 ) ( 1 - r 2 s 2 ) / r 2 s ,
r 2 ( ν ) = r 2 s [ 1 + κ f 1 exp ( 2 π ν τ f 1 ) + κ f 2 exp ( 2 π ν τ f 2 ) + κ ext exp ( 2 π ν τ ext ) ]
r 2 Re [ r 2 ( ν ) ] = r 2 s [ 1 + κ f 1 cos ( 2 π ν τ f 1 ) + κ f 2 cos ( 2 π ν τ f 2 ) + κ ext cos ( 2 π ν τ ext ) ] ,
ϕ r = Im [ r 2 ( ν ) ] r 2 s = κ f 1 sin ( 2 π ν τ f 1 ) + κ f 2 sin ( 2 π ν τ f 2 ) + κ ext sin ( 2 π ν τ ext ) .
g c - g th = - κ f 1 L cos ( 2 π ν τ f 1 ) - κ f 2 L cos ( 2 π ν τ f 2 ) - κ ext L cos ( 2 π ν τ ext ) ,
Δ ϕ 1 = 2 π τ L ( ν - ν th ) + ( 1 + α 2 ) 1 / 2 [ κ f 1 sin ( 2 π ν τ f 1 + arctan α ) + κ f 2 sin ( 2 π ν τ f 2 + arctan α ) + κ ext sin ( 2 π ν τ ext + arctan α ) ] ,
C tot = ( 1 + α 2 ) 1 / 2 τ L ( κ f 1 τ f 1 + κ f 2 τ f 2 + κ ext τ ext ) .
Δ P ~ g c - g th = - κ f 1 L cos ( 4 π ν τ f 1 ) - κ f 2 L cos ( 4 π ν τ f 2 ) - κ ext L cos ( 4 π ν v t / c + 4 π L 0 ν / c ) ,
r ext 2 = 0 exp [ - ( s + a ) x ] s S f 4 π x 2 d x , S f = π r f 2             for x > x d , = π x 2 tan 2 ϕ d             x < x d ,
η f 2 and η ext < S s π · r f 2 f 2 2 f 1 2 T 2 = 1.1 × 10 - 4 ,
Δ P ~ g c - g th = - κ ext L cos ( 4 π ν v t / c + 4 π L 0 ν / c ) + constant .
div v = 0 ,
ρ [ v t + ( v · ) v + 2 Ω · v ] + P - div J = ρ f ,
J = η ( v + v T ) ,
J = η ( v ) ( v + v T ) ,
η = τ γ = K c 2 + K c ( τ γ ) 1 / 2 ,
δ f = ( k v n / π ) sin ( ϑ / 2 ) cos ( α ) ,
δ k = k s - k u ,

Metrics