Abstract

A composite-cavity laser diode is used to monitor the reflectivity or the displacement of the external-cavity mirror for micromechanical photonics devices. Optical disk bits are read out in the near field from the difference in medium reflectivity with an antireflection-coated laser diode and a photodiode. Microbeam vibration is also detected in the near field from the phase difference with an uncoated laser diode and a photodiode. In both cases the carrier-to-noise ratio is very high (more than 45 dB) because of the lack of mode-hopping noise resulting from the extremely short (less than 3 μm) external-cavity length and strong light feedback. These composite-cavity laser diode microdevices are fabricated on a gallium arsenide substrate to eliminate the need for optical alignment.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Stemme, “Resonant silicon sensors,” J. Micromech. Microeng. 1, 113–125 (1991).
    [CrossRef]
  2. R. E. Jones, J. M. Naden, R. C. Neat, “Optical-fibre sensors using micromachined silicon resonant elements,” Proc. Inst. Electr. Eng. 135, 353–358 (1988).
  3. R. O. Miles, A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “An external cavity diode laser sensor,” J. Lightwave Technol. LT-1, 81–93 (1983).
    [CrossRef]
  4. D. Sarid, D. Iams, V. Weissenberger, L. S. Bell, “Compact scanning-force microscope using a laser diode,” Opt. Lett. 13, 1057–1059 (1988).
    [CrossRef] [PubMed]
  5. D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
    [CrossRef]
  6. Y. Katagiri, H. Ukita, “Ion beam sputtered (SiO2)x(Si3N4)1−x antireflection coating on laser facets produced using O2–N2 discharges,” Appl. Opt. 29, 5074–5079 (1990).
    [CrossRef] [PubMed]
  7. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
    [CrossRef]
  8. H. Rong-Qing, T. Shang-Ping, “Improved rate equations for external cavity semiconductor lasers,” J. Quantum Electron. 25, 1580–1584 (1989).
    [CrossRef]
  9. Y. Uenishi, H. Tanaka, H. Ukita, “Monolithic integration of microbeam resonators and laser diodes using AlGaAs/GaAs micromachining,” in Proceedings of Micro System Technology ’92, Third International Conference on Micro Electronics Optics Mechanics Systems and Components (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 313–322.
  10. H. Ukita, Y. Katagiri, S. Fujimori, “Supersmall flying optical head for phase change recording media,” Appl. Opt. 28, 4360–4365 (1989).
    [CrossRef] [PubMed]
  11. J. Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head,” J. Lightwave Technol. 10, 439–447 (1992).
    [CrossRef]

1992 (2)

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

J. Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head,” J. Lightwave Technol. 10, 439–447 (1992).
[CrossRef]

1991 (1)

G. Stemme, “Resonant silicon sensors,” J. Micromech. Microeng. 1, 113–125 (1991).
[CrossRef]

1990 (1)

1989 (2)

H. Rong-Qing, T. Shang-Ping, “Improved rate equations for external cavity semiconductor lasers,” J. Quantum Electron. 25, 1580–1584 (1989).
[CrossRef]

H. Ukita, Y. Katagiri, S. Fujimori, “Supersmall flying optical head for phase change recording media,” Appl. Opt. 28, 4360–4365 (1989).
[CrossRef] [PubMed]

1988 (2)

D. Sarid, D. Iams, V. Weissenberger, L. S. Bell, “Compact scanning-force microscope using a laser diode,” Opt. Lett. 13, 1057–1059 (1988).
[CrossRef] [PubMed]

R. E. Jones, J. M. Naden, R. C. Neat, “Optical-fibre sensors using micromachined silicon resonant elements,” Proc. Inst. Electr. Eng. 135, 353–358 (1988).

1983 (1)

R. O. Miles, A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “An external cavity diode laser sensor,” J. Lightwave Technol. LT-1, 81–93 (1983).
[CrossRef]

1980 (1)

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Bell, L. S.

Bocek, D.

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

Chen, T.

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

Dandridge, A.

R. O. Miles, A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “An external cavity diode laser sensor,” J. Lightwave Technol. LT-1, 81–93 (1983).
[CrossRef]

Elings, V.

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

Fujimori, S.

Gallagher, M.

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

Giallorenzi, T. G.

R. O. Miles, A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “An external cavity diode laser sensor,” J. Lightwave Technol. LT-1, 81–93 (1983).
[CrossRef]

Howells, S.

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

Hsieh, H. C.

J. Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head,” J. Lightwave Technol. 10, 439–447 (1992).
[CrossRef]

Iams, D.

Jones, R. E.

R. E. Jones, J. M. Naden, R. C. Neat, “Optical-fibre sensors using micromachined silicon resonant elements,” Proc. Inst. Electr. Eng. 135, 353–358 (1988).

Katagiri, Y.

Kim, J. Y.

J. Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head,” J. Lightwave Technol. 10, 439–447 (1992).
[CrossRef]

Kobayashi, K.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Lang, R.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Miles, R. O.

R. O. Miles, A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “An external cavity diode laser sensor,” J. Lightwave Technol. LT-1, 81–93 (1983).
[CrossRef]

Naden, J. M.

R. E. Jones, J. M. Naden, R. C. Neat, “Optical-fibre sensors using micromachined silicon resonant elements,” Proc. Inst. Electr. Eng. 135, 353–358 (1988).

Neat, R. C.

R. E. Jones, J. M. Naden, R. C. Neat, “Optical-fibre sensors using micromachined silicon resonant elements,” Proc. Inst. Electr. Eng. 135, 353–358 (1988).

Pax, P.

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

Rong-Qing, H.

H. Rong-Qing, T. Shang-Ping, “Improved rate equations for external cavity semiconductor lasers,” J. Quantum Electron. 25, 1580–1584 (1989).
[CrossRef]

Sarid, D.

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

D. Sarid, D. Iams, V. Weissenberger, L. S. Bell, “Compact scanning-force microscope using a laser diode,” Opt. Lett. 13, 1057–1059 (1988).
[CrossRef] [PubMed]

Shang-Ping, T.

H. Rong-Qing, T. Shang-Ping, “Improved rate equations for external cavity semiconductor lasers,” J. Quantum Electron. 25, 1580–1584 (1989).
[CrossRef]

Stemme, G.

G. Stemme, “Resonant silicon sensors,” J. Micromech. Microeng. 1, 113–125 (1991).
[CrossRef]

Tanaka, H.

Y. Uenishi, H. Tanaka, H. Ukita, “Monolithic integration of microbeam resonators and laser diodes using AlGaAs/GaAs micromachining,” in Proceedings of Micro System Technology ’92, Third International Conference on Micro Electronics Optics Mechanics Systems and Components (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 313–322.

Tveten, A. B.

R. O. Miles, A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “An external cavity diode laser sensor,” J. Lightwave Technol. LT-1, 81–93 (1983).
[CrossRef]

Uenishi, Y.

Y. Uenishi, H. Tanaka, H. Ukita, “Monolithic integration of microbeam resonators and laser diodes using AlGaAs/GaAs micromachining,” in Proceedings of Micro System Technology ’92, Third International Conference on Micro Electronics Optics Mechanics Systems and Components (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 313–322.

Ukita, H.

Y. Katagiri, H. Ukita, “Ion beam sputtered (SiO2)x(Si3N4)1−x antireflection coating on laser facets produced using O2–N2 discharges,” Appl. Opt. 29, 5074–5079 (1990).
[CrossRef] [PubMed]

H. Ukita, Y. Katagiri, S. Fujimori, “Supersmall flying optical head for phase change recording media,” Appl. Opt. 28, 4360–4365 (1989).
[CrossRef] [PubMed]

Y. Uenishi, H. Tanaka, H. Ukita, “Monolithic integration of microbeam resonators and laser diodes using AlGaAs/GaAs micromachining,” in Proceedings of Micro System Technology ’92, Third International Conference on Micro Electronics Optics Mechanics Systems and Components (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 313–322.

Weissenberger, V.

Yi, L.

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

J. Lightwave Technol. (2)

R. O. Miles, A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “An external cavity diode laser sensor,” J. Lightwave Technol. LT-1, 81–93 (1983).
[CrossRef]

J. Y. Kim, H. C. Hsieh, “An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head,” J. Lightwave Technol. 10, 439–447 (1992).
[CrossRef]

J. Micromech. Microeng. (1)

G. Stemme, “Resonant silicon sensors,” J. Micromech. Microeng. 1, 113–125 (1991).
[CrossRef]

J. Quantum Electron. (1)

H. Rong-Qing, T. Shang-Ping, “Improved rate equations for external cavity semiconductor lasers,” J. Quantum Electron. 25, 1580–1584 (1989).
[CrossRef]

Opt. Lett. (1)

Proc. Inst. Electr. Eng. (1)

R. E. Jones, J. M. Naden, R. C. Neat, “Optical-fibre sensors using micromachined silicon resonant elements,” Proc. Inst. Electr. Eng. 135, 353–358 (1988).

Rev. Sci. Instrum. (1)

D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905–3908 (1992).
[CrossRef]

Other (1)

Y. Uenishi, H. Tanaka, H. Ukita, “Monolithic integration of microbeam resonators and laser diodes using AlGaAs/GaAs micromachining,” in Proceedings of Micro System Technology ’92, Third International Conference on Micro Electronics Optics Mechanics Systems and Components (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 313–322.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Principle of detection of (a) optical bits and (b) microbeam displacement with composite-cavity laser diode characteristics: (a) reflectivity change ΔR of the external recording medium and (b) external-cavity-length difference Δh.

Fig. 2
Fig. 2

Effects of AR coating on the laser diode facet to suppress interferometric light-output variation.

Fig. 3
Fig. 3

Composite-cavity modes for (i) a laser diode, (ii) a long external cavity, and (iii) an extremely short external cavity. Because the extremely short external-cavity mode falls outside the gain spectral width, there is no mode hopping resulting from the external cavity.

Fig. 4
Fig. 4

Process steps used to fabricate an integrated flying optical head and a resonant microbeam integrated with a laser diode. Both process are the same except for the removal of the sacrificial region by the use of wet etching.

Fig. 5
Fig. 5

(a) An integrated flying optical head consists of a laser diode–photodiode attached to an air-bearing slider. (b) Near-field pattern of the taper-ridged waveguide laser diode monolithically integrated with a photodiode. (c) Example of a track error signal obtained from the signal-amplitude difference between two wobbling marks.

Fig. 6
Fig. 6

Comparison of optical heads. The integrated head is automatically placed close to the medium surface by the air-bearing slider.

Fig. 7
Fig. 7

Comparison of resonant sensors. The integrated sensor is alignment free and is driven optically from one side (30 μm away) by a laser diode (LD2) and sensed optically at the other side (3 μm away) by another laser diode (LD1) and a photodiode (PD). MB, microbeam.

Fig. 8
Fig. 8

Main parts of the integrated resonant sensor. LD1, laser diode for vibration sensor; MB, microbeam for horizontal vibration; LD2, laser diode for microbeam excitation.

Fig. 9
Fig. 9

Variation in microbeam vibration amplitude as a function of excitation light power. Vertical axis, 5 mV/division; horizontal axis, 2 μs/division.

Fig. 10
Fig. 10

Explanation of microbeam displacement with composite-cavity laser diode light output having a peak every λ/2.

Fig. 11
Fig. 11

Microbeam vibration amplitude versus laser diode light power.

Fig. 12
Fig. 12

Resonance frequency as a function of cantilever microbeam length for GaAs. Solid curve, theoretical calculations; circles, experimental measurements. Frequency response curves are also shown. t, Thickness.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ f = c / 2 n L ,

Metrics