Abstract

We have performed several physical and optical measurements on the Cr:LiSAF (LiSrAlF6) laser material that are relevant to its laser performance, including thermal and mechanical properties, water durabilities, and Auger upconversion constants. The expansion coefficient, Young’s modulus, fracture toughness, thermal conductivity, and heat capacity are all used to determine an overall thermomechanical figure of merit for the crystal. An investigation of the water durability suggests that the cooling solution should be maintained at pH = 7 to ameliorate problems associated with water dissolution. The Auger constant was found to become much more significant at higher Cr doping, in which excited-state migration leads to a substantial increase in the upconversion rate. We propose a design for a 50-W Cr:LiSAF laser system that is based on a detailed knowledge of all the relevant material parameters.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yin, D. A. Keszler, “Crystal chemistry of colquiriite-type fluorides,” Chem. Mater. 4, 645–648 (1992).
    [CrossRef]
  2. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
    [CrossRef]
  3. B. Chai, J. Lefaucheur, M. Stalder, M. Bass, “Cr:LiSr0.8Ca0.2AlF6 (Cr:LiSCAF) tunable laser,” Opt. Lett. 17, 1584–1586 (1992).
    [CrossRef] [PubMed]
  4. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
    [CrossRef]
  5. L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, D. J. Nelson, “Laser emission from the transition metal compound, LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
    [CrossRef] [PubMed]
  6. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
    [CrossRef]
  7. S. A. Payne, L. L. Chase, L. K. Smith, B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259–S268 (1990).
    [CrossRef]
  8. M. Stalder, B. H. T. Chai, M. Bass, “Flashlamp pumped Cr:LiSrAlF6 laser,” Appl. Phys. Lett. 58, 216–218 (1991).
    [CrossRef]
  9. R. Scheps, “Cr:LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1068–1070 (1991).
    [CrossRef]
  10. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991).
    [CrossRef] [PubMed]
  11. R. Scheps, “Cr-doped solid state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1–9 (1992).
    [CrossRef]
  12. R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photonics Technol. Lett. 4, 548–550 (1992).
    [CrossRef]
  13. S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
    [CrossRef]
  14. P. Beaud, Y.-F. Chen, B. H. T. Chai, M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064–1066 (1992).
    [CrossRef] [PubMed]
  15. Q. Zhang, G. J. Dixon, B. H. T. Chai, P. N. Kean, “Electronically tuned diode-laser-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 17, 43–45 (1992).
    [CrossRef] [PubMed]
  16. F. Balembois, P. Georges, F. Salin, G. Roger, A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
    [CrossRef]
  17. T. Ditmire, M. D. Perry, “Terawatt Cr:LiSrAlF6 laser system,” Opt. Lett. 18, 426–428 (1993); W. E. White, J. R. Hunter, L. Van Woerkom, T. Ditmire, M. D. Perry, “120-fs terawatt Ti:Al2O3/Cr:LiSrAlF6 laser system,” Opt. Lett. 17, 1067–1069 (1992).
    [CrossRef] [PubMed]
  18. N. H. Rizvi, P. M. W. French, J. R. Taylor, “50-fs pulse generation from a self-starting cw passively mode-locked Cr: LiSrAlF6 laser,” Opt. Lett. 17, 877–879 (1992); “Generation of 33-fs pulses from a passively mode-locked Cr3+:LiSrAlF6 laser,” Opt. Lett. 17, 1605–1607 (1992).
    [CrossRef] [PubMed]
  19. A. Miller, P. Li Kam Wa, B. H. T. Chai, E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSrAlF6,” Opt. Lett. 17, 195–197 (1992); J. M. Evans, D. E. Spence, W. Sibbelt, B. H. T. Chai, A. Miller, “50-fs pulse generation for a self-mode-locked Cr:LiSrAlF6 laser,” Opt. Lett. 17, 1447–1449 (1992).
    [CrossRef] [PubMed]
  20. P. Li Kam Wa, B. H. T. Chai, A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438–1440 (1992).
    [CrossRef]
  21. D. J. Harter, J. Squier, G. Mourou, “Alexandrite-laser-pumped Cr3+:LiSrAlF6,” Opt. Lett. 17, 1512–1514 (1992).
    [CrossRef] [PubMed]
  22. J. J. DeYoreo, L. J. Atherton, D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991); laser crystals are available from Lightning Optical Corporation, Florida.
    [CrossRef]
  23. J. L. Emmett, W. F. Krupke, W. R. Sooy, “The potential of high-average-power solid state lasers,” rep. UCRL-53571, distribution category Uni Cal-21,22 (National Technical Information Service, Springfield, Va., 1984); W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium garnet,” J. Opt. Soc. Am. B 3, 102–114 (1986).
    [CrossRef]
  24. M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
    [CrossRef]
  25. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, L. E. Davis, “Thermomechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970–977 (1991).
    [CrossRef]
  26. For a discussion of durability issues see T. Izumitani, Optical Glass (Kyoritsu Shuppan, Tokyo, 1984; translation by Berkeley Scientific, Berkeley, Calif., 1985); C. F. Baes, R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976), Chap. 2, p. 42.
  27. W. R. Rapoport, M. L. Shand, “Excited-state absorption and upconversion in Cr:LiSrAlF6,” Solid State Commun. 84, 29–31 (1992).
    [CrossRef]
  28. M. A. Noginov, V. G. Ostroumov, I. A. Shcherbakov, V. A. Smirnov, D. A. Zubenko, “Interaction of excited Cr3+ ions in laser crystals,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of 1991 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 127–129.
  29. Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).
  30. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).
  31. H. W. H. Lee, S. A. Payne, L. L. Chase, “Excited-state absorption of Cr3+ in LiCaAlF6: effects of asymmetric distortions and intensity selection roles,” Phys. Rev. B 39, 8907–8914 (1989).
    [CrossRef]
  32. R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
    [CrossRef]
  33. J. J. Snyder, P. Reichert, T. Baer, “Fast diffraction-limited cylindrical microlenses,” Appl. Opt. 30, 2743–2747 (1991).
    [CrossRef] [PubMed]
  34. R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
    [CrossRef]

1993 (3)

1992 (15)

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

W. R. Rapoport, M. L. Shand, “Excited-state absorption and upconversion in Cr:LiSrAlF6,” Solid State Commun. 84, 29–31 (1992).
[CrossRef]

N. H. Rizvi, P. M. W. French, J. R. Taylor, “50-fs pulse generation from a self-starting cw passively mode-locked Cr: LiSrAlF6 laser,” Opt. Lett. 17, 877–879 (1992); “Generation of 33-fs pulses from a passively mode-locked Cr3+:LiSrAlF6 laser,” Opt. Lett. 17, 1605–1607 (1992).
[CrossRef] [PubMed]

A. Miller, P. Li Kam Wa, B. H. T. Chai, E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSrAlF6,” Opt. Lett. 17, 195–197 (1992); J. M. Evans, D. E. Spence, W. Sibbelt, B. H. T. Chai, A. Miller, “50-fs pulse generation for a self-mode-locked Cr:LiSrAlF6 laser,” Opt. Lett. 17, 1447–1449 (1992).
[CrossRef] [PubMed]

P. Li Kam Wa, B. H. T. Chai, A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438–1440 (1992).
[CrossRef]

D. J. Harter, J. Squier, G. Mourou, “Alexandrite-laser-pumped Cr3+:LiSrAlF6,” Opt. Lett. 17, 1512–1514 (1992).
[CrossRef] [PubMed]

R. Scheps, “Cr-doped solid state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1–9 (1992).
[CrossRef]

R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photonics Technol. Lett. 4, 548–550 (1992).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[CrossRef]

P. Beaud, Y.-F. Chen, B. H. T. Chai, M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064–1066 (1992).
[CrossRef] [PubMed]

Q. Zhang, G. J. Dixon, B. H. T. Chai, P. N. Kean, “Electronically tuned diode-laser-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 17, 43–45 (1992).
[CrossRef] [PubMed]

F. Balembois, P. Georges, F. Salin, G. Roger, A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Y. Yin, D. A. Keszler, “Crystal chemistry of colquiriite-type fluorides,” Chem. Mater. 4, 645–648 (1992).
[CrossRef]

B. Chai, J. Lefaucheur, M. Stalder, M. Bass, “Cr:LiSr0.8Ca0.2AlF6 (Cr:LiSCAF) tunable laser,” Opt. Lett. 17, 1584–1586 (1992).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

1991 (6)

M. Stalder, B. H. T. Chai, M. Bass, “Flashlamp pumped Cr:LiSrAlF6 laser,” Appl. Phys. Lett. 58, 216–218 (1991).
[CrossRef]

R. Scheps, “Cr:LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1068–1070 (1991).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991).
[CrossRef] [PubMed]

J. J. DeYoreo, L. J. Atherton, D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991); laser crystals are available from Lightning Optical Corporation, Florida.
[CrossRef]

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, L. E. Davis, “Thermomechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970–977 (1991).
[CrossRef]

J. J. Snyder, P. Reichert, T. Baer, “Fast diffraction-limited cylindrical microlenses,” Appl. Opt. 30, 2743–2747 (1991).
[CrossRef] [PubMed]

1990 (1)

S. A. Payne, L. L. Chase, L. K. Smith, B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259–S268 (1990).
[CrossRef]

1989 (2)

H. W. H. Lee, S. A. Payne, L. L. Chase, “Excited-state absorption of Cr3+ in LiCaAlF6: effects of asymmetric distortions and intensity selection roles,” Phys. Rev. B 39, 8907–8914 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

1976 (1)

Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

1972 (1)

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

Atherton, L. J.

J. J. DeYoreo, L. J. Atherton, D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991); laser crystals are available from Lightning Optical Corporation, Florida.
[CrossRef]

Baer, T.

Balembois, F.

F. Balembois, P. Georges, F. Salin, G. Roger, A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Bass, M.

B. Chai, J. Lefaucheur, M. Stalder, M. Bass, “Cr:LiSr0.8Ca0.2AlF6 (Cr:LiSCAF) tunable laser,” Opt. Lett. 17, 1584–1586 (1992).
[CrossRef] [PubMed]

M. Stalder, B. H. T. Chai, M. Bass, “Flashlamp pumped Cr:LiSrAlF6 laser,” Appl. Phys. Lett. 58, 216–218 (1991).
[CrossRef]

Beach, R.

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

Beaud, P.

P. Beaud, Y.-F. Chen, B. H. T. Chai, M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064–1066 (1992).
[CrossRef] [PubMed]

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Benett, W.

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

Brun, A.

F. Balembois, P. Georges, F. Salin, G. Roger, A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

Chai, B.

Chai, B. H. T.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

Q. Zhang, G. J. Dixon, B. H. T. Chai, P. N. Kean, “Electronically tuned diode-laser-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 17, 43–45 (1992).
[CrossRef] [PubMed]

A. Miller, P. Li Kam Wa, B. H. T. Chai, E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSrAlF6,” Opt. Lett. 17, 195–197 (1992); J. M. Evans, D. E. Spence, W. Sibbelt, B. H. T. Chai, A. Miller, “50-fs pulse generation for a self-mode-locked Cr:LiSrAlF6 laser,” Opt. Lett. 17, 1447–1449 (1992).
[CrossRef] [PubMed]

P. Beaud, Y.-F. Chen, B. H. T. Chai, M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064–1066 (1992).
[CrossRef] [PubMed]

P. Li Kam Wa, B. H. T. Chai, A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438–1440 (1992).
[CrossRef]

M. Stalder, B. H. T. Chai, M. Bass, “Flashlamp pumped Cr:LiSrAlF6 laser,” Appl. Phys. Lett. 58, 216–218 (1991).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259–S268 (1990).
[CrossRef]

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Chase, L. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259–S268 (1990).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

H. W. H. Lee, S. A. Payne, L. L. Chase, “Excited-state absorption of Cr3+ in LiCaAlF6: effects of asymmetric distortions and intensity selection roles,” Phys. Rev. B 39, 8907–8914 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Chen, Y.-F.

Comaskey, B.

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

Davin, J.

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

Davis, L. E.

DeLoach, L. D.

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, D. J. Nelson, “Laser emission from the transition metal compound, LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef] [PubMed]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[CrossRef]

DeSalvo, R.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

DeYoreo, J. J.

J. J. DeYoreo, L. J. Atherton, D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991); laser crystals are available from Lightning Optical Corporation, Florida.
[CrossRef]

Ditmire, T.

Dixon, G. J.

Emanuel, M.

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

Emmett, J. L.

J. L. Emmett, W. F. Krupke, W. R. Sooy, “The potential of high-average-power solid state lasers,” rep. UCRL-53571, distribution category Uni Cal-21,22 (National Technical Information Service, Springfield, Va., 1984); W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium garnet,” J. Opt. Soc. Am. B 3, 102–114 (1986).
[CrossRef]

Freitas, B.

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

French, P. M. W.

Garnov, S.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Georges, P.

F. Balembois, P. Georges, F. Salin, G. Roger, A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Hagan, D. J.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Harter, D. J.

Hughes, R. S.

Izumitani, T.

For a discussion of durability issues see T. Izumitani, Optical Glass (Kyoritsu Shuppan, Tokyo, 1984; translation by Berkeley Scientific, Berkeley, Calif., 1985); C. F. Baes, R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976), Chap. 2, p. 42.

Kean, P. N.

Keszler, D. A.

Y. Yin, D. A. Keszler, “Crystal chemistry of colquiriite-type fluorides,” Chem. Mater. 4, 645–648 (1992).
[CrossRef]

Klimentor, S.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Krupke, W. F.

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, D. J. Nelson, “Laser emission from the transition metal compound, LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef] [PubMed]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

J. L. Emmett, W. F. Krupke, W. R. Sooy, “The potential of high-average-power solid state lasers,” rep. UCRL-53571, distribution category Uni Cal-21,22 (National Technical Information Service, Springfield, Va., 1984); W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium garnet,” J. Opt. Soc. Am. B 3, 102–114 (1986).
[CrossRef]

Kway, W. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

Lee, H. W. H.

H. W. H. Lee, S. A. Payne, L. L. Chase, “Excited-state absorption of Cr3+ in LiCaAlF6: effects of asymmetric distortions and intensity selection roles,” Phys. Rev. B 39, 8907–8914 (1989).
[CrossRef]

Lefaucheur, J.

Li Kam Wa, P.

Long, M.

Mamedov, T. G.

Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Marion, J. E.

Miller, A.

Mitchell, S.

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

Morris, R.

Morris, R. C.

Mourou, G.

Mundinger, D.

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

Myers, J. F.

Nelson, D. J.

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Noginov, M. A.

M. A. Noginov, V. G. Ostroumov, I. A. Shcherbakov, V. A. Smirnov, D. A. Zubenko, “Interaction of excited Cr3+ ions in laser crystals,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of 1991 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 127–129.

O’Dell, E. W.

Osiko, V. V.

Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Ostroumov, V. G.

M. A. Noginov, V. G. Ostroumov, I. A. Shcherbakov, V. A. Smirnov, D. A. Zubenko, “Interaction of excited Cr3+ ions in laser crystals,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of 1991 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 127–129.

Payne, S. A.

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, D. J. Nelson, “Laser emission from the transition metal compound, LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[CrossRef]

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, L. E. Davis, “Thermomechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970–977 (1991).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259–S268 (1990).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

H. W. H. Lee, S. A. Payne, L. L. Chase, “Excited-state absorption of Cr3+ in LiCaAlF6: effects of asymmetric distortions and intensity selection roles,” Phys. Rev. B 39, 8907–8914 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Perry, M. D.

Prokhorov, A. M.

Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Rapoport, W. R.

W. R. Rapoport, M. L. Shand, “Excited-state absorption and upconversion in Cr:LiSrAlF6,” Solid State Commun. 84, 29–31 (1992).
[CrossRef]

Reichert, P.

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

J. J. Snyder, P. Reichert, T. Baer, “Fast diffraction-limited cylindrical microlenses,” Appl. Opt. 30, 2743–2747 (1991).
[CrossRef] [PubMed]

Richardson, K.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Richardson, M.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Richardson, M. C.

Rizvi, N. H.

Roberts, D. H.

J. J. DeYoreo, L. J. Atherton, D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991); laser crystals are available from Lightning Optical Corporation, Florida.
[CrossRef]

Roger, G.

F. Balembois, P. Georges, F. Salin, G. Roger, A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Rosenberg, A.

Said, A. A.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Sakun, V. P.

Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Salin, F.

F. Balembois, P. Georges, F. Salin, G. Roger, A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Scheps, R.

R. Scheps, “Cr-doped solid state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1–9 (1992).
[CrossRef]

R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photonics Technol. Lett. 4, 548–550 (1992).
[CrossRef]

R. Scheps, “Cr:LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1068–1070 (1991).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991).
[CrossRef] [PubMed]

Serreze, H. B.

Shand, M. L.

W. R. Rapoport, M. L. Shand, “Excited-state absorption and upconversion in Cr:LiSrAlF6,” Solid State Commun. 84, 29–31 (1992).
[CrossRef]

Shcherbakov, I. A.

Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

M. A. Noginov, V. G. Ostroumov, I. A. Shcherbakov, V. A. Smirnov, D. A. Zubenko, “Interaction of excited Cr3+ ions in laser crystals,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of 1991 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 127–129.

Sheik-Bahae, M.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Smirnov, V. A.

M. A. Noginov, V. G. Ostroumov, I. A. Shcherbakov, V. A. Smirnov, D. A. Zubenko, “Interaction of excited Cr3+ ions in laser crystals,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of 1991 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 127–129.

Smith, L. K.

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, D. J. Nelson, “Laser emission from the transition metal compound, LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259–S268 (1990).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Snyder, J. J.

Soileau, M. J.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Solarz, R.

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

Sooy, W. R.

J. L. Emmett, W. F. Krupke, W. R. Sooy, “The potential of high-average-power solid state lasers,” rep. UCRL-53571, distribution category Uni Cal-21,22 (National Technical Information Service, Springfield, Va., 1984); W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium garnet,” J. Opt. Soc. Am. B 3, 102–114 (1986).
[CrossRef]

Squier, J.

Stalder, M.

B. Chai, J. Lefaucheur, M. Stalder, M. Bass, “Cr:LiSr0.8Ca0.2AlF6 (Cr:LiSCAF) tunable laser,” Opt. Lett. 17, 1584–1586 (1992).
[CrossRef] [PubMed]

M. Stalder, B. H. T. Chai, M. Bass, “Flashlamp pumped Cr:LiSrAlF6 laser,” Appl. Phys. Lett. 58, 216–218 (1991).
[CrossRef]

Tassano, J. B.

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[CrossRef]

Taylor, J. R.

Van Stryland, E.

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Van Stryland, E. W.

Velsko, S.

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

Voronko, Yu. K.

Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

Woods, B. W.

Yin, Y.

Y. Yin, D. A. Keszler, “Crystal chemistry of colquiriite-type fluorides,” Chem. Mater. 4, 645–648 (1992).
[CrossRef]

Zhang, Q.

Zubenko, D. A.

M. A. Noginov, V. G. Ostroumov, I. A. Shcherbakov, V. A. Smirnov, D. A. Zubenko, “Interaction of excited Cr3+ ions in laser crystals,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of 1991 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 127–129.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Stalder, B. H. T. Chai, M. Bass, “Flashlamp pumped Cr:LiSrAlF6 laser,” Appl. Phys. Lett. 58, 216–218 (1991).
[CrossRef]

F. Balembois, P. Georges, F. Salin, G. Roger, A. Brun, “Tunable blue light source by intracavity frequency doubling of a Cr-doped LiSrAlF6 laser,” Appl. Phys. Lett. 61, 2381–2382 (1992).
[CrossRef]

Chem. Mater. (1)

Y. Yin, D. A. Keszler, “Crystal chemistry of colquiriite-type fluorides,” Chem. Mater. 4, 645–648 (1992).
[CrossRef]

IEEE J. Quantum Electron. (5)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992).
[CrossRef]

R. Scheps, “Cr:LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1068–1070 (1991).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188–1196 (1992).
[CrossRef]

R. Beach, W. Benett, B. Freitas, D. Mundinger, B. Comaskey, R. Solarz, M. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–978 (1992).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photonics Technol. Lett. 4, 548–550 (1992).
[CrossRef]

J. Appl. Phys. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, H. W. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

J. Cryst. Growth (1)

J. J. DeYoreo, L. J. Atherton, D. H. Roberts, “Elimination of scattering centers from Cr:LiCaAlF6,” J. Cryst. Growth 113, 691–697 (1991); laser crystals are available from Lightning Optical Corporation, Florida.
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (11)

R. Beach, P. Reichert, W. Benett, B. Freitas, S. Mitchell, S. Velsko, J. Davin, R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Opt. Lett. 15, 1326–1328 (1993).
[CrossRef]

P. Beaud, Y.-F. Chen, B. H. T. Chai, M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064–1066 (1992).
[CrossRef] [PubMed]

Q. Zhang, G. J. Dixon, B. H. T. Chai, P. N. Kean, “Electronically tuned diode-laser-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 17, 43–45 (1992).
[CrossRef] [PubMed]

T. Ditmire, M. D. Perry, “Terawatt Cr:LiSrAlF6 laser system,” Opt. Lett. 18, 426–428 (1993); W. E. White, J. R. Hunter, L. Van Woerkom, T. Ditmire, M. D. Perry, “120-fs terawatt Ti:Al2O3/Cr:LiSrAlF6 laser system,” Opt. Lett. 17, 1067–1069 (1992).
[CrossRef] [PubMed]

N. H. Rizvi, P. M. W. French, J. R. Taylor, “50-fs pulse generation from a self-starting cw passively mode-locked Cr: LiSrAlF6 laser,” Opt. Lett. 17, 877–879 (1992); “Generation of 33-fs pulses from a passively mode-locked Cr3+:LiSrAlF6 laser,” Opt. Lett. 17, 1605–1607 (1992).
[CrossRef] [PubMed]

A. Miller, P. Li Kam Wa, B. H. T. Chai, E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSrAlF6,” Opt. Lett. 17, 195–197 (1992); J. M. Evans, D. E. Spence, W. Sibbelt, B. H. T. Chai, A. Miller, “50-fs pulse generation for a self-mode-locked Cr:LiSrAlF6 laser,” Opt. Lett. 17, 1447–1449 (1992).
[CrossRef] [PubMed]

P. Li Kam Wa, B. H. T. Chai, A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438–1440 (1992).
[CrossRef]

D. J. Harter, J. Squier, G. Mourou, “Alexandrite-laser-pumped Cr3+:LiSrAlF6,” Opt. Lett. 17, 1512–1514 (1992).
[CrossRef] [PubMed]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. F. Krupke, L. D. DeLoach, R. Morris, E. W. O’Dell, D. J. Nelson, “Laser emission from the transition metal compound, LiSrCrF6,” Opt. Lett. 18, 200–202 (1993).
[CrossRef] [PubMed]

B. Chai, J. Lefaucheur, M. Stalder, M. Bass, “Cr:LiSr0.8Ca0.2AlF6 (Cr:LiSCAF) tunable laser,” Opt. Lett. 17, 1584–1586 (1992).
[CrossRef] [PubMed]

Opt. Mater. (1)

R. Scheps, “Cr-doped solid state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1–9 (1992).
[CrossRef]

Opt. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259–S268 (1990).
[CrossRef]

Phys. Rev. B (1)

H. W. H. Lee, S. A. Payne, L. L. Chase, “Excited-state absorption of Cr3+ in LiCaAlF6: effects of asymmetric distortions and intensity selection roles,” Phys. Rev. B 39, 8907–8914 (1989).
[CrossRef]

Solid State Commun. (1)

W. R. Rapoport, M. L. Shand, “Excited-state absorption and upconversion in Cr:LiSrAlF6,” Solid State Commun. 84, 29–31 (1992).
[CrossRef]

Sov. Phys. JETP (2)

Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun, I. A. Shcherbakov, “Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations,” Sov. Phys. JETP 44, 251–261 (1976).

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

Other (4)

M. A. Noginov, V. G. Ostroumov, I. A. Shcherbakov, V. A. Smirnov, D. A. Zubenko, “Interaction of excited Cr3+ ions in laser crystals,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of 1991 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 127–129.

For a discussion of durability issues see T. Izumitani, Optical Glass (Kyoritsu Shuppan, Tokyo, 1984; translation by Berkeley Scientific, Berkeley, Calif., 1985); C. F. Baes, R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976), Chap. 2, p. 42.

J. L. Emmett, W. F. Krupke, W. R. Sooy, “The potential of high-average-power solid state lasers,” rep. UCRL-53571, distribution category Uni Cal-21,22 (National Technical Information Service, Springfield, Va., 1984); W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium garnet,” J. Opt. Soc. Am. B 3, 102–114 (1986).
[CrossRef]

M. Richardson, M. J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D. J. Hagan, S. Klimentor, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1848, 392–402 (1993). This paper contains an independent assessment of the thermomechanical properties of LiSAF. There appears to be concurrence on all quantitites except κ. The density appears in K. I. Schaffers, D. A. Keszler, “Structure of LiSrAlF6,” Acta Crystallogr. Sec. C 47, 18–20 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used to assess Auger upconversion rates. The neutral density filters (NDF’s) are shifted from the position in the dye laser beam to the Cr:LiSAF emission path to increase the energy impinging on the sample.

Fig. 2
Fig. 2

Emission transients of LiSrAl.49Cr.51F6 obtained through the use of the apparatus depicted in Fig. 1 for four different dye laser pulse energies ranging from E = 0.009–1.17 mJ. The α values and γ constants resulting from the theoretical fits to Eqs. (10) and the information in Table 5 are noted on the individual plots.

Fig. 3
Fig. 3

Plot of the Auger upconversion constant γ as a function of the Cr atomic fraction XCr in LiSrAl1−xCrxF6. Each data point represents the use of a different excitation energy, as is illustrated by the data in Fig. 2. The LiSrCrF6 data points (XCr = 1) have been omitted from the linear fit to the data, as discussed in the text.

Fig. 4
Fig. 4

Conceptual design of AlGaAs laser diode wing-pumped, 50-W, free-running, repetitively pulsed Cr:LiSAF laser. O.C., output coupling; H.T., highly transmitting; H.R., highly reflecting; and R., reflective.

Fig. 5
Fig. 5

Model projections for the optical-to-optical efficiency of 770-nm diode pump light to 852-nm Cr:LiSAF output as a function of O.C. reflectivity. Three curves are plotted for different values of crystal loss as labeled in the plot.

Tables (6)

Tables Icon

Table 1 Thermomechanical Properties of LiSAF

Tables Icon

Table 2 Water Durability Dw of Optical Materials at 50 °C for Unstirred Conditions

Tables Icon

Table 3 Effect of Unstirred Nonaqueous Solvents, Temperature, and pH on the Durability Dw of LiSAF

Tables Icon

Table 4 Effect of pH on the Durability Dw of LiSAF at 22 °C during Vigorous Stirring

Tables Icon

Table 5 Properties of Cr:LiSAF crystals used in Auger Up-Conversion Studies with Oxazine 750 or Kiton Red Dye Laser Excitationa

Tables Icon

Table 6 Parameters Corresponding to < 50 W Operation of Diode Pumped CrLiSrF6

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

Q h = 6 R T b t ,
R T = K 1 c κ ( 1 - ν ) α E ( a ) 1 / 2 ,
R T = R T ( a ) 1 / 2 .
d N d t = - N τ - γ N 2 ,
N ( x , y , z , t ) = N ( x , y , z ) A ( t ) .
N ( x , y , z ) = F 0 h ν exp ( - 2 x 2 w x 2 ) exp ( - 2 y 2 w y 2 ) α exp ( - α z ) ,
d A d t = - A τ - γ A 2 ( F 0 h ν ) α 4 [ 1 - exp ( - 2 α l ) ] [ 1 - exp ( - α l ) ] .
E = F 0 π w x w y 2 ,
d A d t = - A τ - γ A 2 E h ν V eff ,
V eff = 2 π w x w y α [ 1 - exp ( - α l ) ] [ 1 - exp ( - 2 α l ) ] .
A ( t ) = exp ( - t / τ ) 1 + δ [ 1 - exp ( - t / τ ) ] ,
δ = γ τ E h ν V eff .
γ = 0.4 × 10 - 15 cm 3 s - 1 + ( 8.5 × 10 - 15 cm 3 s - 1 ) X Cr .
γ = 2 ( 16 π 2 ) R Auger 3 / 2 R mig 9 / 2 2 3 / 4 τ N Cr ,
R 6 = 3 c τ 8 π 4 n 2 σ em ( λ ) σ abs ( λ ) d λ .
N char = ( γ τ ) - 1 .
exp [ 4 N thr ( σ em - σ ESA ) l ] T 4 R O . C . = 1 ,
d N d t = R ex - N τ - N σ em 4 I h ν l - γ N 2 ,
R ex = η trans η abs P p h ν p V ,
τ th = 0 N th d N R ex - N τ - γ N 2 .
τ th = τ ( 4 R ex γ τ 2 + 1 ) 1 / 2 × ln { ( 4 R ex γ τ 2 + 1 ) 1 / 2 + 2 γ N th τ + 1 ( 4 R ex γ τ 2 + 1 ) 1 / 2 - 2 γ N th τ - 1 × 4 R ex γ τ 2 [ ( 4 R ex γ τ 2 + 1 ) 1 / 2 + 1 ] 2 } ,
N th = ln ( 1 T 2 R o . c . ) 4 ( σ em - σ ESA ) l .
I = h ν l ( R ex τ - γ N th 2 τ - N th ) 4 N th τ σ em .
I out = ( 1 - R o . c . ) I .
P out = I out w t η mode .
E out = P out ( τ p - τ th ) .
P max = 12 R T t 2 .
P th = f R [ R ex ( h ν p - h ν l ) τ p + 4 I N th σ ESA ( τ p - τ th ) + γ N th 2 h ν l ( τ p - τ th / 2 ) ] ,

Metrics