Abstract

DuPont’s HRF-150 photopolymer film is investigated for use in three-dimensional holographic memories. Measurements of sensitivity, hologram persistence, the lateral spread of the photoinitiated reaction, and the variation of diffraction efficiency with modulation depth, spatial frequency and tilt angle, and intensity are reported. We observed that the diffraction efficiency of the HRF-150 photopolymer for a given exposure decreases with increases in intensity and grating tilt angle. The holograms were reconstructed for long periods of time at room temperature. The photoinitiated nondestructively reaction spread less than 100 μm over a period of 16 h.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, “Parallel optical memories,” Byte 17, 179–182 (1992).
  2. K. Curtis, D. Psaltis, “Multi-channel disk-based optical correlator,” presented at the Society of Photo-Optical and Instrumentation Engineers Conference on Optical Implementation of Information Processing, San Diego, Calif., 12 July 1993; “Disk-based optical correlator,” submitted to Opt. Eng.
  3. W. K. Smothers, T. J. Trout, A. M. Weber, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer films,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).
  4. K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
    [CrossRef] [PubMed]
  5. K. Curtis, D. Psaltis, “Holographic recording in photopolymer films,” in OSA Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 145.
  6. K. Curtis, “Phase grating profiles in photopolymers,” Opt. Commun. 95, 113–116 (1993).
    [CrossRef]
  7. U. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
    [CrossRef]

1993 (2)

K. Curtis, “Phase grating profiles in photopolymers,” Opt. Commun. 95, 113–116 (1993).
[CrossRef]

U. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

1992 (2)

Caulfield, H. J.

U. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Curtis, K.

K. Curtis, “Phase grating profiles in photopolymers,” Opt. Commun. 95, 113–116 (1993).
[CrossRef]

K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
[CrossRef] [PubMed]

K. Curtis, D. Psaltis, “Multi-channel disk-based optical correlator,” presented at the Society of Photo-Optical and Instrumentation Engineers Conference on Optical Implementation of Information Processing, San Diego, Calif., 12 July 1993; “Disk-based optical correlator,” submitted to Opt. Eng.

K. Curtis, D. Psaltis, “Holographic recording in photopolymer films,” in OSA Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 145.

Mickish, D. J.

W. K. Smothers, T. J. Trout, A. M. Weber, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer films,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Mirsalehi, M. M.

U. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Psaltis, D.

D. Psaltis, “Parallel optical memories,” Byte 17, 179–182 (1992).

K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
[CrossRef] [PubMed]

K. Curtis, D. Psaltis, “Multi-channel disk-based optical correlator,” presented at the Society of Photo-Optical and Instrumentation Engineers Conference on Optical Implementation of Information Processing, San Diego, Calif., 12 July 1993; “Disk-based optical correlator,” submitted to Opt. Eng.

K. Curtis, D. Psaltis, “Holographic recording in photopolymer films,” in OSA Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 145.

Rhee, U.

U. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Shamir, J.

U. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Smothers, W. K.

W. K. Smothers, T. J. Trout, A. M. Weber, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer films,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Trout, T. J.

W. K. Smothers, T. J. Trout, A. M. Weber, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer films,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Vikram, C. S.

U. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Weber, A. M.

W. K. Smothers, T. J. Trout, A. M. Weber, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer films,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

Appl. Opt. (1)

Byte (1)

D. Psaltis, “Parallel optical memories,” Byte 17, 179–182 (1992).

Opt. Commun. (1)

K. Curtis, “Phase grating profiles in photopolymers,” Opt. Commun. 95, 113–116 (1993).
[CrossRef]

Opt. Eng. (1)

U. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Other (3)

K. Curtis, D. Psaltis, “Multi-channel disk-based optical correlator,” presented at the Society of Photo-Optical and Instrumentation Engineers Conference on Optical Implementation of Information Processing, San Diego, Calif., 12 July 1993; “Disk-based optical correlator,” submitted to Opt. Eng.

W. K. Smothers, T. J. Trout, A. M. Weber, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer films,” in Practical Holography IV, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1212, 30–39 (1990).

K. Curtis, D. Psaltis, “Holographic recording in photopolymer films,” in OSA Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Recording geometry used for measurements with the following elements: P’s polarizers; 1/2’s, half-wave plates; PB, polarizing beam splitter.

Fig. 2
Fig. 2

Diffraction efficiency versus exposure energy.

Fig. 3
Fig. 3

Diffraction efficiency versus intensity for E = 20 mJ/cm2.

Fig. 4
Fig. 4

Diffraction efficiency versus modulation depth.

Fig. 5
Fig. 5

Diffraction efficiency versus full angle between the beams outside the material for E = 20 mJ/cm2 and no grating tilt.

Fig. 6
Fig. 6

Diffraction efficiency versus angle outside the material for an E = 20 mJ/cm2 image beam incident normal to the surface.

Fig. 7
Fig. 7

Diffraction efficiency versus angle outside the material for E = 20 mJ/cm2 with 90° between the 0° reference beam and the signal.

Fig. 8
Fig. 8

Diffraction versus readout time demonstrating nondestructive recall.

Fig. 9
Fig. 9

Cross sections of two reconstructed holograms across pre-exposed areas.

Metrics