Abstract

The absorption and scattering coefficient of a macroscopically homogeneous strongly scattering medium (lipid emulsion) containing Methylene Blue is quantitatively measured in the spectral range from 620 to 700 nm. We conduct the measurements in the frequency domain by using a light-emitting diode (LED) whose intensity is modulated at a frequency of 60 MHz. We derive an analytical expression for the absorption and scattering coefficients that is based on a two-distance measurement technique. A comparison with other measurement protocols such as measurement at two modulation frequencies shows that the two-distance method gives a better determination of the scattering and absorption coefficients. This study highlights the efficiency and ease of use of the LED technique, which lends itself to in vivo spectroscopy of biological tissues.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).
  2. M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematopotphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
    [CrossRef] [PubMed]
  3. M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294(1988).
    [CrossRef] [PubMed]
  4. B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
    [CrossRef] [PubMed]
  5. S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Laser Surg. Med. 6, 494–503 (1987).
    [CrossRef]
  6. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  7. F. F. Jobsis, J. H. Keizer, J. C. LaManna, M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3in vivo,” J. Appl. Physiol. 43, 858–872 (1977).
    [PubMed]
  8. E. Gratton, “Method for the automatic correction of scattering in absorption spectra by using the integrating sphere,” Biopolymers 10, 2629–2634 (1971).
    [CrossRef] [PubMed]
  9. R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan, J. A. Parrish, eds. (Plenum, New York, 1982).
    [CrossRef]
  10. P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
    [CrossRef] [PubMed]
  11. T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef]
  12. K. M. Yoo, Y. Takiguchi, R. R. Alfano, “Dynamic effect of weak localization on the light scattering from random media using ultrafast laser technology,” Appl. Opt. 28, 2343–2349 (1989).
    [CrossRef] [PubMed]
  13. R. Araki, I. Nashimoto, “Near-infrared imaging in vivo: imaging of Hb oxygenation in living tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 321–322 (1991).
  14. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  15. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
    [CrossRef] [PubMed]
  16. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef] [PubMed]
  17. Aldrich Chemical Company Laboratories, Milwaukee, Wisconsin, 1993.
  18. B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
    [CrossRef]
  19. N. E. Dorsey, ed., Properties of Ordinary Water-Substance, (Reinhold, New York, 1940).
  20. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  21. J. L. Karagiannes, Z. Zhang, B. Grossweiner, L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Opt. 28, 2311–2317(1989).
    [CrossRef] [PubMed]
  22. M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 62–75 (1990).
  23. L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
    [CrossRef]

1993 (2)

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

1992 (1)

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

1991 (2)

1990 (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (5)

1988 (1)

M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294(1988).
[CrossRef] [PubMed]

1987 (2)

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematopotphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Laser Surg. Med. 6, 494–503 (1987).
[CrossRef]

1986 (1)

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

1977 (1)

F. F. Jobsis, J. H. Keizer, J. C. LaManna, M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3in vivo,” J. Appl. Physiol. 43, 858–872 (1977).
[PubMed]

1971 (1)

E. Gratton, “Method for the automatic correction of scattering in absorption spectra by using the integrating sphere,” Biopolymers 10, 2629–2634 (1971).
[CrossRef] [PubMed]

Alfano, R. R.

Anderson, R. R.

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan, J. A. Parrish, eds. (Plenum, New York, 1982).
[CrossRef]

Araki, R.

R. Araki, I. Nashimoto, “Near-infrared imaging in vivo: imaging of Hb oxygenation in living tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 321–322 (1991).

Berndt, K. W.

Berns, M. W.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Burns, D. M.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematopotphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

Chance, B.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 62–75 (1990).

Chatelain, A.

G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cope, M.

M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294(1988).
[CrossRef] [PubMed]

Cornaz, P.

G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Delpy, D. T.

M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294(1988).
[CrossRef] [PubMed]

Depeursinge, C.

G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Farrel, T. J.

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Feather, J. W.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematopotphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

Feddersen, B. A.

B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
[CrossRef]

Fishkin, J. B.

Gratton, E.

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
[CrossRef]

E. Gratton, “Method for the automatic correction of scattering in absorption spectra by using the integrating sphere,” Biopolymers 10, 2629–2634 (1971).
[CrossRef] [PubMed]

Grossweiner, B.

Grossweiner, L. I.

Haskell, R. C.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Jacques, S. L.

P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
[CrossRef] [PubMed]

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Laser Surg. Med. 6, 494–503 (1987).
[CrossRef]

Jobsis, F. F.

F. F. Jobsis, J. H. Keizer, J. C. LaManna, M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3in vivo,” J. Appl. Physiol. 43, 858–872 (1977).
[PubMed]

Karagiannes, J. L.

Keizer, J. H.

F. F. Jobsis, J. H. Keizer, J. C. LaManna, M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3in vivo,” J. Appl. Physiol. 43, 858–872 (1977).
[PubMed]

Lakowicz, J. R.

LaManna, J. C.

F. F. Jobsis, J. H. Keizer, J. C. LaManna, M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3in vivo,” J. Appl. Physiol. 43, 858–872 (1977).
[PubMed]

Moes, C. J. M.

Monnier, P.

G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Moulton, J. D.

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 62–75 (1990).

Nashimoto, I.

R. Araki, I. Nashimoto, “Near-infrared imaging in vivo: imaging of Hb oxygenation in living tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 321–322 (1991).

Nishioka, N. S.

Parrish, J. A.

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan, J. A. Parrish, eds. (Plenum, New York, 1982).
[CrossRef]

Parsa, P.

Patterson, M. S.

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematopotphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 62–75 (1990).

Piston, D. W.

B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
[CrossRef]

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Laser Surg. Med. 6, 494–503 (1987).
[CrossRef]

Pushka, W.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematopotphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

Rosenthal, M.

F. F. Jobsis, J. H. Keizer, J. C. LaManna, M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3in vivo,” J. Appl. Physiol. 43, 858–872 (1977).
[PubMed]

Savary, M.

G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Svaasand, L. O.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Takiguchi, Y.

Tromberg, B. J.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Tsay, T.-T.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

van den Bergh, H.

G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Wagnieres, G.

G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B.

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Wilson, B. C.

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematopotphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 62–75 (1990).

Yoo, K. M.

Zhang, Z.

Appl. Opt. (6)

Biopolymers (1)

E. Gratton, “Method for the automatic correction of scattering in absorption spectra by using the integrating sphere,” Biopolymers 10, 2629–2634 (1971).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Appl. Physiol. (1)

F. F. Jobsis, J. H. Keizer, J. C. LaManna, M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3in vivo,” J. Appl. Physiol. 43, 858–872 (1977).
[PubMed]

J. Opt. Soc. Am. A (1)

Laser Surg. Med. (1)

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Laser Surg. Med. 6, 494–503 (1987).
[CrossRef]

Med. Biol. Eng. Comput. (1)

M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294(1988).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Opt. Eng. (1)

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Photochem. Photobiol. (1)

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematopotphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
[CrossRef]

Other (6)

N. E. Dorsey, ed., Properties of Ordinary Water-Substance, (Reinhold, New York, 1940).

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 62–75 (1990).

G. Wagnieres, C. Depeursinge, P. Monnier, M. Savary, P. Cornaz, A. Chatelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

R. R. Anderson, J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan, J. A. Parrish, eds. (Plenum, New York, 1982).
[CrossRef]

R. Araki, I. Nashimoto, “Near-infrared imaging in vivo: imaging of Hb oxygenation in living tissues,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1431, 321–322 (1991).

Aldrich Chemical Company Laboratories, Milwaukee, Wisconsin, 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral emission of nine LED’s whose peak wavelengths range from 570 to 870 nm. The superposition of these spectra yields a white-light source in the optical window from 550 to 900 nm. Normalizing the spectra obscures the fact that long-wavelength LED’s typically have higher power. The spectra of the LED’s were measured with an optical multichannel analyzer (Princeton Instruments, ST-120), while the LED’s were modulated at 20 MHz (curves 1–3) and 60 MHz (curves 4–9); the green, yellow, and orange LED’s (LED’s 1, 2, and 3, respectively) could not be efficiently modulated at frequencies higher than 20 MHz. The numbered spectra refer to the following devices (we list manufacturer, part number, and approximate integrated power emission under the given modulating condition): 1, Hewlett-Packard (H-P) HLMP-3502, 0.002 mW; 2, H-P HLMP-3400, 0.006 mW; 3, H-P HLMP-D401, 0.009 mW; 4, H-P HLMP-4101, 0.2 mW; 5, H-P HEMT-6000, 0.3 mW; 6, Asea Brown Bover; HAFO 1A330, 0.5 mW; 7, H-P HFBR-1402, 0.7 mW; 8, Motorola MFOE1203, 1.5 mW; 9, Asea Brown Bover; HAFO 1A277A, 1 mW.

Fig. 2
Fig. 2

Experimental arrangement showing the LED immersed in the scattering medium, the source–detector fiber geometry, and the other instrumentation. We used two frequency-locked synthesizers (Synt’s) and two amplifiers (Ampl’s) to modulate both the LED and the gain function of the photomultiplier tubes (PMT’s). PMTr, source light collected by reference optical fiber, provides a reference signal against which the phase lag of the measured light, collected by PMTs by the detector optical fiber and through the monochromator (Mon), is calculated. The reference channel also compensates for variations in LED intensity by a ratioing method.

Fig. 3
Fig. 3

Dependence on ω/2π for three different values of μ a of (a) [Φ(r, ω) − Φ(r − Δr, ω)]/[Φ(r, ω) − Φ(r, ω − Δω)], (b) [ln(rU ac)| r − ln(rU ac)| r −Δ r ]/[ln(rU ac)| r − ln(rU ac)| r ,ω−Δω], where r = 4 cm, Δr = 2 cm, Δω/2π = 100 MHz. We indicate ln(rU ac) with A on the y axis of (b). We note that the quantities on they axis in (a) and (b) are the ratio of the right-hand to the left-hand sides of inequalities (18) and (19), respectively. The horizontal line in each plot corresponds to the equivalence of the variations of Φ and ln(rU ac) relative to changes in r and ω The two-distance technique is more sensitive than the two-frequency method in the region where the curves are above the horizontal line.

Fig. 4
Fig. 4

Scattering and absorption coefficients of the Liposyn solution containing no MB.

Fig. 5
Fig. 5

Spectra of MB absorption coefficients at different MB concentrations in the Liposyn solution. The various spectra refer to MB concentrations of (a) 0.045, 0.090, 0.135, 0.180, and 0.225 μM; (b) 0.270, 0.315, 0.360, and 0.450 μM. The spectrum relative to 0.405 μM is not shown for clarity.

Fig. 6
Fig. 6

Quantitative comparison between MB absorption coefficient spectra measured in the strongly scattering medium by the LED technique (filled circles) and in a nonscattering regime by a spectrophotometer (curves). The spectra correspond to MB concentrations of 0.090, 0.225, and 0.450 μM as labeled. Errors bars for the experimental data relative to the strongly scattering medium are shown every 20 nm.

Fig. 7
Fig. 7

Dependence of the optical coefficients on MB concentration at five wavelengths. (a) scattering coefficient (a progressive offset of 10, 20, 30, and 40 cm−1 has been added to the points relative to 640, 660, 680, and 700 nm, respectively); (b) absorption coefficient (the left scale refers only to the points relative to 640 nm). Straight lines were obtained by a weighted least-squares method. When the error bars are not displayed they are of the order of the symbol dimensions.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

μ a = 1 L ln ( I 0 I ) = [ c ] ,
Φ = r ( ν 2 μ a 2 + ω 2 ν 2 D 2 ) 1 / 4 sin [ 1 2 arctan ( ω ν μ a ) ] ,
ln ( r U dc ) = - r μ a D + ln ( S 4 π ν D ) ,
ln ( r U ac ) = - r ( ν 2 μ a 2 + ω 2 ν 2 D 2 ) 1 / 4 cos [ 1 2 arctan ( ω ν μ a ) ] + ln ( S A 4 π ν D ) ,
φ = ρ ( ν 2 μ a 2 + ω 2 ν 2 D 2 ) 1 / 4 sin [ 1 2 arctan ( ω ν μ a ) ] ,
δ = - ρ μ a D ,
α = - ρ ( ν 2 μ a 2 + ω 2 ν 2 D 2 ) 1 / 4 cos [ 1 2 arctan ( ω ν μ a ) ] ,
μ a = - ω 2 ν δ φ ( φ 2 δ 2 + 1 ) - 1 / 2 ,
Δ μ a μ a = 2 φ 2 + δ 2 φ 2 + δ 2 [ ( Δ δ ) 2 δ 2 + ( Δ φ ) 2 φ 2 ] 1 / 2 .
μ a = ω 2 ν ( φ α - α φ ) ,
Δ μ a μ a = α 2 + φ 2 α 2 - φ 2 [ ( Δ φ ) 2 φ 2 + ( Δ α ) 2 α 2 ] 1 / 2 .
μ a = ω 2 ν δ α ( α 2 δ 2 - 1 ) - 1 / 2 ,
Δ μ a μ a = 2 α 2 - δ 2 α 2 - δ 2 [ ( Δ δ ) 2 δ 2 + ( Δ α ) 2 α 2 ] 1 / 2 .
μ s = δ 2 3 μ α ρ 2 - μ a ,
Δ μ s μ s = 2 [ ( Δ δ ) 2 δ 2 + ( Δ ρ ) 2 ρ 2 + ( δ 2 + 3 μ a 2 ρ 2 2 δ 2 ) 2 ( Δ μ a ) μ a 2 ] 1 / 2 .
μ s = α 2 - φ 2 3 μ a ρ 2 - μ a ,
Δ μ s μ s = 2 { α 2 ( Δ α ) 2 + φ 2 ( Δ φ ) 2 ( α 2 - φ 2 ) 2 + ( Δ ρ ) 2 ρ 2 + [ α 2 - φ 2 + 3 μ a 2 ρ 2 2 ( α 2 - φ 2 ) ] 2 ( Δ μ a ) 2 μ a 2 } 1 / 2 .
Φ r Δ r ω - Δ ω ω Φ ω d ω .
| ln ( r U ac ) r | Δ r ω - Δ ω ω | ln ( r U ac ) ω | d ω .
α ω = - r μ a 2 D ( { [ 1 + ( ω 2 ν μ a ) 2 ] 1 / 2 } 1 / 2 - { 1 + [ 1 + ( ω 1 ν μ a ) 2 ] 1 / 2 } 1 / 2 ) + ln [ S ( ω 2 ) A ( ω 2 ) S ( ω 1 ) A ( ω 1 ) ] ,

Metrics