Abstract

A method to enhance the absorption sensitivity of a sample by utilizing surface-field enhancement with surface-plasmon resonance is proposed. The experimental setup is based on the configuration for the attenuated total internal reflection (ATR) method but with a thin metal film deposed on the substrate prism. The mechanism responsible for the sensitivity enhancement is analyzed theoretically; the best thickness for the metal film to have to attain optimum enhancement is numerically calculated. Experimental results are shown in which the proposed method compared with the conventional ATR method exhibits the sensitivity enhancement of the absorption measurement. The sensor applications for this technique are also discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Giuliani, H. Wohltjen, N. L. Jarvis, “Reversible optical waveguide sensor for ammonia vapors,” Opt. Lett. 8, 54–56 (1983).
    [CrossRef] [PubMed]
  2. T. L. Bergman, F. P. Incropera, W. H. Stevenson, “Miniature fiber-optic refractometer for measurement of salinity in double-diffusive thermohaline systems,” Rev. Sci. Instrum. 56, 291–296 (1985).
    [CrossRef]
  3. W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensing Bioelectron. 6, 227–232 (1991).
    [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  5. C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensing Actuators 3, 79–88 (1982/1983).
    [CrossRef]
  6. S. Löfäs, B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
    [CrossRef]
  7. K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160–1163 (1988).
    [CrossRef] [PubMed]
  8. A. Hartstein, J. R. Kirtley, J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–203 (1980).
    [CrossRef]
  9. A. Hatta, T. Ohshima, W. Suëtaka, “Observation of the enhanced infrared absorption of p-nitrovenzoate on Ag island films with an ATR technique,” Appl. Phys. A 29, 71–75 (1982).
    [CrossRef]
  10. M. Osawa, M. Kuramitsu, A. Hatta, W. Suëtaka, “Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films,” Surf. Sci. 175, L787–L793 (1986).
    [CrossRef]
  11. E. Kretschmann, “Die Bestimmung optischer Konstanten von Mettlen duch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  12. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).
  13. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polaritonlike waves guided by thin, lossy films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  14. K. Matsubara, S. Kawata, S. Minami, “A compact surface plasmon resonance sensor for measurement of water in process,” Appl. Spectrosc. 42, 1375–1379 (1988).
    [CrossRef]

1991 (1)

W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensing Bioelectron. 6, 227–232 (1991).
[CrossRef]

1990 (1)

S. Löfäs, B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
[CrossRef]

1988 (2)

1986 (2)

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polaritonlike waves guided by thin, lossy films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

M. Osawa, M. Kuramitsu, A. Hatta, W. Suëtaka, “Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films,” Surf. Sci. 175, L787–L793 (1986).
[CrossRef]

1985 (1)

T. L. Bergman, F. P. Incropera, W. H. Stevenson, “Miniature fiber-optic refractometer for measurement of salinity in double-diffusive thermohaline systems,” Rev. Sci. Instrum. 56, 291–296 (1985).
[CrossRef]

1983 (1)

1982 (1)

A. Hatta, T. Ohshima, W. Suëtaka, “Observation of the enhanced infrared absorption of p-nitrovenzoate on Ag island films with an ATR technique,” Appl. Phys. A 29, 71–75 (1982).
[CrossRef]

1980 (1)

A. Hartstein, J. R. Kirtley, J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–203 (1980).
[CrossRef]

1971 (1)

E. Kretschmann, “Die Bestimmung optischer Konstanten von Mettlen duch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Bergman, T. L.

T. L. Bergman, F. P. Incropera, W. H. Stevenson, “Miniature fiber-optic refractometer for measurement of salinity in double-diffusive thermohaline systems,” Rev. Sci. Instrum. 56, 291–296 (1985).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polaritonlike waves guided by thin, lossy films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Clerc, D.

W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensing Bioelectron. 6, 227–232 (1991).
[CrossRef]

Giuliani, J. F.

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).

Hartstein, A.

A. Hartstein, J. R. Kirtley, J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–203 (1980).
[CrossRef]

Hatta, A.

M. Osawa, M. Kuramitsu, A. Hatta, W. Suëtaka, “Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films,” Surf. Sci. 175, L787–L793 (1986).
[CrossRef]

A. Hatta, T. Ohshima, W. Suëtaka, “Observation of the enhanced infrared absorption of p-nitrovenzoate on Ag island films with an ATR technique,” Appl. Phys. A 29, 71–75 (1982).
[CrossRef]

Incropera, F. P.

T. L. Bergman, F. P. Incropera, W. H. Stevenson, “Miniature fiber-optic refractometer for measurement of salinity in double-diffusive thermohaline systems,” Rev. Sci. Instrum. 56, 291–296 (1985).
[CrossRef]

Jarvis, N. L.

Johnsson, B.

S. Löfäs, B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
[CrossRef]

Kawata, S.

Kirtley, J. R.

A. Hartstein, J. R. Kirtley, J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–203 (1980).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Mettlen duch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Kuramitsu, M.

M. Osawa, M. Kuramitsu, A. Hatta, W. Suëtaka, “Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films,” Surf. Sci. 175, L787–L793 (1986).
[CrossRef]

Liedberg, B.

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensing Actuators 3, 79–88 (1982/1983).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensing Actuators 3, 79–88 (1982/1983).
[CrossRef]

Löfäs, S.

S. Löfäs, B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
[CrossRef]

Lukosz, W.

W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensing Bioelectron. 6, 227–232 (1991).
[CrossRef]

Matsubara, K.

Minami, S.

Nellen, P. M.

W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensing Bioelectron. 6, 227–232 (1991).
[CrossRef]

Nylander, C.

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensing Actuators 3, 79–88 (1982/1983).
[CrossRef]

Ohshima, T.

A. Hatta, T. Ohshima, W. Suëtaka, “Observation of the enhanced infrared absorption of p-nitrovenzoate on Ag island films with an ATR technique,” Appl. Phys. A 29, 71–75 (1982).
[CrossRef]

Osawa, M.

M. Osawa, M. Kuramitsu, A. Hatta, W. Suëtaka, “Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films,” Surf. Sci. 175, L787–L793 (1986).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Stamm, C.

W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensing Bioelectron. 6, 227–232 (1991).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polaritonlike waves guided by thin, lossy films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Stevenson, W. H.

T. L. Bergman, F. P. Incropera, W. H. Stevenson, “Miniature fiber-optic refractometer for measurement of salinity in double-diffusive thermohaline systems,” Rev. Sci. Instrum. 56, 291–296 (1985).
[CrossRef]

Suëtaka, W.

M. Osawa, M. Kuramitsu, A. Hatta, W. Suëtaka, “Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films,” Surf. Sci. 175, L787–L793 (1986).
[CrossRef]

A. Hatta, T. Ohshima, W. Suëtaka, “Observation of the enhanced infrared absorption of p-nitrovenzoate on Ag island films with an ATR technique,” Appl. Phys. A 29, 71–75 (1982).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polaritonlike waves guided by thin, lossy films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tsang, J. C.

A. Hartstein, J. R. Kirtley, J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–203 (1980).
[CrossRef]

Weiss, P.

W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensing Bioelectron. 6, 227–232 (1991).
[CrossRef]

Wohltjen, H.

Appl. Opt. (1)

Appl. Phys. A (1)

A. Hatta, T. Ohshima, W. Suëtaka, “Observation of the enhanced infrared absorption of p-nitrovenzoate on Ag island films with an ATR technique,” Appl. Phys. A 29, 71–75 (1982).
[CrossRef]

Appl. Spectrosc. (1)

Biosensing Bioelectron. (1)

W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosensing Bioelectron. 6, 227–232 (1991).
[CrossRef]

J. Chem. Soc. Chem. Commun. (1)

S. Löfäs, B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun. 21, 1526–1528 (1990).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polaritonlike waves guided by thin, lossy films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

A. Hartstein, J. R. Kirtley, J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–203 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

T. L. Bergman, F. P. Incropera, W. H. Stevenson, “Miniature fiber-optic refractometer for measurement of salinity in double-diffusive thermohaline systems,” Rev. Sci. Instrum. 56, 291–296 (1985).
[CrossRef]

Sensing Actuators (1)

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensing Actuators 3, 79–88 (1982/1983).
[CrossRef]

Surf. Sci. (1)

M. Osawa, M. Kuramitsu, A. Hatta, W. Suëtaka, “Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films,” Surf. Sci. 175, L787–L793 (1986).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, “Die Bestimmung optischer Konstanten von Mettlen duch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other (2)

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical arrangement used to excite the surface-plasma wave (SPW) based on the Kretschmann configuration where a thin film metal is sandwiched between the prism and the sample.

Fig. 2
Fig. 2

Calculated reflectance R as a function of the incident angle θ for (A) pure water as a nonabsorbing sample and (B) contaminated water as an absorbing sample. A silver film is used as a metal with a thickness of 44 nm.

Fig. 3
Fig. 3

Calculated absorbance A as a function of metal thickness d and incident angle θ.

Fig. 4
Fig. 4

Calculated absorbance A as a function of incident angle θ for different thicknesses (45.5–60.5 nm) of the metal film. The line at zero represents the case in which the thickness is 48.5 nm. The base line for each curve is shifted by 0.1 unit in the vertical direction.

Fig. 5
Fig. 5

Explanatory illustration of the mechanism responsible for the enhancement of the absorption.

Fig. 6
Fig. 6

Calculated reflectance R versus incident angle θ of silver film with optimum thickness (48.23 nm). Pure water and contaminated water are used as (A) a nonabsorbing and (B) an absorbing sample, respectively.

Fig. 7
Fig. 7

Experimental setup for measuring reflectance R versus the incident angle θ curve with a P, polarizer; BS, beam splitter; and ND, neutral density. We scan the incident angle to the thin metal film by rotating the stage. f, Focal length of the collector lens.

Fig. 8
Fig. 8

Measured intensity as a function of the incident angle (a) with a Ag thin film of 40-nm thickness and (b) without a Ag thin film. Pure water and Methylene Blue are used as nonabsorbing and absorbing samples, respectively.

Tables (1)

Tables Icon

Table 1 Parameters Used for Simulation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ( θ ) = | r 01 ( θ ) + r 12 ( θ ) exp [ 2 i k z ( θ ) ] 1 + r 01 ( θ ) r 12 ( θ ) exp [ 2 i k z ( θ ) ] | 2 ,
k z ( θ ) = 2 π λ n 1 d [ 1 - ( n 0 n 1 sin θ ) 2 ] - 1 / 2 ,

Metrics