Abstract

The multifilter rotating shadow-band radiometer is a ground-based instrument that uses independent interference-filter–photodiode detectors and the automated rotating shadow-band technique to make spectrally resolved measurements at seven wavelength passbands (chosen at the time of manufacture between 350 nm and 1.7 μm) of direct-normal, total-horizontal, and diffuse-horizontal irradiances. This instrument achieves an accuracy in direct-normal spectral irradiance comparable with that of tracking radiometers, and it is more accurate than conventional instruments for the determination of the diffuse and total-horizontal spectral irradiances because the angular acceptance function of the instrument closely approximates the ideal cosine response, and because the measured direct-normal component can be corrected for the remaining angular acceptance error. The three irradiance components are measured with the same detector for a given wavelength. Together with the automated shadow-band technique, this guarantees that the calibration coefficients are identical for each, thus reducing errors when one compares them (as opposed to measurements made with independent instruments). One can use the direct-normal component observations for Langley analysis to obtain depths and to provide an ongoing calibration against the solar constant by extrapolation to zero air mass. Thus the long-term stability of all three measured components can be tied to the solar constant by an analysis of the routinely collected data.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Iqbal, An Introduction to Solar Radiation (Academic, New York, 1983). Note that Fig. 12.5.1 of Iqbal shows definitions of the half angles, whereas his associated table, Table 12.5.1, shows full angles = 2* half angles. The Zp, or umbral angle, is of particular importance for a blocking method because it is the angle for which every point on the detector is blocked.
  2. M. L. Wesely, “Simplified techniques to study components of solar radiation under haze and clouds,” J. Appl. Meteorol 21, 373–383 (1982).
    [CrossRef]
  3. R. Guzzi, G. C. Maracci, R. Rizzi, A. Sicardi, “Spectroradiometer for ground-based measurements related to remote sensing in the visible from a satellite,” Appl. Opt. 24, 2859–2863 (1985).
    [CrossRef] [PubMed]
  4. T. Stoffel, C. Riordan, J. Bigger, “Joint EPRI/SERI project to evaluate solar energy radiation measurement systems for electric utility solar radiation resource assessment,” in Proceedings of the IEEE Photovoltaic Specialist’s Conference (Institute of Electrical and Electronics Engineers, New York, 1991).
  5. J. P. Kerr, G. W. Thurtell, C. B. Tanner, “An integrating pyranometer for climatological observer stations and mesoscale networks,” J. Appl. Meteorol. 6, 688–694 (1967).
    [CrossRef]
  6. A. E. Stiegman, C. J. Bruegge, A. W. Springsteen, “UV stability and contamination analysis of Spectralon diffuse reflectance material,” Opt. Eng. 32, 799–804 (1993).
    [CrossRef]
  7. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
    [CrossRef]
  8. M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particles by remote sensing, part 1: theory,” J. Atmos. Sci. 36, 163–173 (1979).
    [CrossRef]
  9. G. E. Shaw, “Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra,” Appl. Opt. 18, 988–993 (1979).
    [CrossRef] [PubMed]
  10. J. J. Michalsky, L. C. Harrison, W. E. Berkheiser, “Cosine response characteristics of radiometric and photometric sensors,” presented at the 1992 Annual Conference of the American Solar Energy Society, Cocoa Beach, Fla., 15–18 1992.
  11. L. W. Thomason, B. M. Herman, R. M. Schotland, J. A. Reagan, “Extraterrestrial solar flux measurement limitations due to a Beer’s law assumption and uncertainty in local time,” Appl. Opt. 21, 1191–1195 (1982).
    [CrossRef] [PubMed]
  12. L. Harrison, J. J. Michalsky, “Objective algorithms for the retrieval of optical depths from ground-based measurements,” Appl. Opt. 33, (1994).
    [CrossRef] [PubMed]

1994 (1)

L. Harrison, J. J. Michalsky, “Objective algorithms for the retrieval of optical depths from ground-based measurements,” Appl. Opt. 33, (1994).
[CrossRef] [PubMed]

1993 (1)

A. E. Stiegman, C. J. Bruegge, A. W. Springsteen, “UV stability and contamination analysis of Spectralon diffuse reflectance material,” Opt. Eng. 32, 799–804 (1993).
[CrossRef]

1985 (1)

1982 (2)

1979 (2)

G. E. Shaw, “Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra,” Appl. Opt. 18, 988–993 (1979).
[CrossRef] [PubMed]

M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particles by remote sensing, part 1: theory,” J. Atmos. Sci. 36, 163–173 (1979).
[CrossRef]

1978 (1)

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

1967 (1)

J. P. Kerr, G. W. Thurtell, C. B. Tanner, “An integrating pyranometer for climatological observer stations and mesoscale networks,” J. Appl. Meteorol. 6, 688–694 (1967).
[CrossRef]

Berkheiser, W. E.

J. J. Michalsky, L. C. Harrison, W. E. Berkheiser, “Cosine response characteristics of radiometric and photometric sensors,” presented at the 1992 Annual Conference of the American Solar Energy Society, Cocoa Beach, Fla., 15–18 1992.

Bigger, J.

T. Stoffel, C. Riordan, J. Bigger, “Joint EPRI/SERI project to evaluate solar energy radiation measurement systems for electric utility solar radiation resource assessment,” in Proceedings of the IEEE Photovoltaic Specialist’s Conference (Institute of Electrical and Electronics Engineers, New York, 1991).

Bruegge, C. J.

A. E. Stiegman, C. J. Bruegge, A. W. Springsteen, “UV stability and contamination analysis of Spectralon diffuse reflectance material,” Opt. Eng. 32, 799–804 (1993).
[CrossRef]

Byrne, D. M.

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

Guzzi, R.

Harrison, L.

L. Harrison, J. J. Michalsky, “Objective algorithms for the retrieval of optical depths from ground-based measurements,” Appl. Opt. 33, (1994).
[CrossRef] [PubMed]

Harrison, L. C.

J. J. Michalsky, L. C. Harrison, W. E. Berkheiser, “Cosine response characteristics of radiometric and photometric sensors,” presented at the 1992 Annual Conference of the American Solar Energy Society, Cocoa Beach, Fla., 15–18 1992.

Herman, B. M.

L. W. Thomason, B. M. Herman, R. M. Schotland, J. A. Reagan, “Extraterrestrial solar flux measurement limitations due to a Beer’s law assumption and uncertainty in local time,” Appl. Opt. 21, 1191–1195 (1982).
[CrossRef] [PubMed]

M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particles by remote sensing, part 1: theory,” J. Atmos. Sci. 36, 163–173 (1979).
[CrossRef]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

Iqbal, M.

M. Iqbal, An Introduction to Solar Radiation (Academic, New York, 1983). Note that Fig. 12.5.1 of Iqbal shows definitions of the half angles, whereas his associated table, Table 12.5.1, shows full angles = 2* half angles. The Zp, or umbral angle, is of particular importance for a blocking method because it is the angle for which every point on the detector is blocked.

Kerr, J. P.

J. P. Kerr, G. W. Thurtell, C. B. Tanner, “An integrating pyranometer for climatological observer stations and mesoscale networks,” J. Appl. Meteorol. 6, 688–694 (1967).
[CrossRef]

King, M. D.

M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particles by remote sensing, part 1: theory,” J. Atmos. Sci. 36, 163–173 (1979).
[CrossRef]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

Maracci, G. C.

Michalsky, J. J.

L. Harrison, J. J. Michalsky, “Objective algorithms for the retrieval of optical depths from ground-based measurements,” Appl. Opt. 33, (1994).
[CrossRef] [PubMed]

J. J. Michalsky, L. C. Harrison, W. E. Berkheiser, “Cosine response characteristics of radiometric and photometric sensors,” presented at the 1992 Annual Conference of the American Solar Energy Society, Cocoa Beach, Fla., 15–18 1992.

Reagan, J. A.

L. W. Thomason, B. M. Herman, R. M. Schotland, J. A. Reagan, “Extraterrestrial solar flux measurement limitations due to a Beer’s law assumption and uncertainty in local time,” Appl. Opt. 21, 1191–1195 (1982).
[CrossRef] [PubMed]

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

Riordan, C.

T. Stoffel, C. Riordan, J. Bigger, “Joint EPRI/SERI project to evaluate solar energy radiation measurement systems for electric utility solar radiation resource assessment,” in Proceedings of the IEEE Photovoltaic Specialist’s Conference (Institute of Electrical and Electronics Engineers, New York, 1991).

Rizzi, R.

Schotland, R. M.

Shaw, G. E.

Sicardi, A.

Springsteen, A. W.

A. E. Stiegman, C. J. Bruegge, A. W. Springsteen, “UV stability and contamination analysis of Spectralon diffuse reflectance material,” Opt. Eng. 32, 799–804 (1993).
[CrossRef]

Stiegman, A. E.

A. E. Stiegman, C. J. Bruegge, A. W. Springsteen, “UV stability and contamination analysis of Spectralon diffuse reflectance material,” Opt. Eng. 32, 799–804 (1993).
[CrossRef]

Stoffel, T.

T. Stoffel, C. Riordan, J. Bigger, “Joint EPRI/SERI project to evaluate solar energy radiation measurement systems for electric utility solar radiation resource assessment,” in Proceedings of the IEEE Photovoltaic Specialist’s Conference (Institute of Electrical and Electronics Engineers, New York, 1991).

Tanner, C. B.

J. P. Kerr, G. W. Thurtell, C. B. Tanner, “An integrating pyranometer for climatological observer stations and mesoscale networks,” J. Appl. Meteorol. 6, 688–694 (1967).
[CrossRef]

Thomason, L. W.

Thurtell, G. W.

J. P. Kerr, G. W. Thurtell, C. B. Tanner, “An integrating pyranometer for climatological observer stations and mesoscale networks,” J. Appl. Meteorol. 6, 688–694 (1967).
[CrossRef]

Wesely, M. L.

M. L. Wesely, “Simplified techniques to study components of solar radiation under haze and clouds,” J. Appl. Meteorol 21, 373–383 (1982).
[CrossRef]

Appl. Opt. (4)

J. Appl. Meteorol (1)

M. L. Wesely, “Simplified techniques to study components of solar radiation under haze and clouds,” J. Appl. Meteorol 21, 373–383 (1982).
[CrossRef]

J. Appl. Meteorol. (1)

J. P. Kerr, G. W. Thurtell, C. B. Tanner, “An integrating pyranometer for climatological observer stations and mesoscale networks,” J. Appl. Meteorol. 6, 688–694 (1967).
[CrossRef]

J. Atmos. Sci. (2)

M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978).
[CrossRef]

M. D. King, B. M. Herman, “Determination of the ground albedo and the index of absorption of atmospheric particles by remote sensing, part 1: theory,” J. Atmos. Sci. 36, 163–173 (1979).
[CrossRef]

Opt. Eng. (1)

A. E. Stiegman, C. J. Bruegge, A. W. Springsteen, “UV stability and contamination analysis of Spectralon diffuse reflectance material,” Opt. Eng. 32, 799–804 (1993).
[CrossRef]

Other (3)

M. Iqbal, An Introduction to Solar Radiation (Academic, New York, 1983). Note that Fig. 12.5.1 of Iqbal shows definitions of the half angles, whereas his associated table, Table 12.5.1, shows full angles = 2* half angles. The Zp, or umbral angle, is of particular importance for a blocking method because it is the angle for which every point on the detector is blocked.

J. J. Michalsky, L. C. Harrison, W. E. Berkheiser, “Cosine response characteristics of radiometric and photometric sensors,” presented at the 1992 Annual Conference of the American Solar Energy Society, Cocoa Beach, Fla., 15–18 1992.

T. Stoffel, C. Riordan, J. Bigger, “Joint EPRI/SERI project to evaluate solar energy radiation measurement systems for electric utility solar radiation resource assessment,” in Proceedings of the IEEE Photovoltaic Specialist’s Conference (Institute of Electrical and Electronics Engineers, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic geometry of an automated rotating shadow band (shown in the position where the measurement of the total-horizontal irradiance is made).

Fig. 2
Fig. 2

Multifilter detector cross section (not to scale).

Fig. 3
Fig. 3

Filtered passbands of the MFRSR.

Fig. 4
Fig. 4

Angular response error of a, MFRSR angle from west to east; b, MFRSR angle from north to south, both for seven passbands; c, Eppley PSP angle from south to north.

Fig. 5
Fig. 5

a, Time series of MFRSR data for one day; b, associated Langley regressions.

Fig. 6
Fig. 6

Bar statistics of optical depths measured by a MFRSR (left item of each passband pair) and a tracking radiometer (right item of each passband pair). Central boxes represent the central 50% of the data; white central bars represent the median. Dashed lines and vertical brackets illustrate the extrema.

Tables (3)

Tables Icon

Table 1 Field-of-View Full Anglesa

Tables Icon

Table 2 Total Optical Depths (τ) at the RMO

Tables Icon

Table 3 Correlation Coefficients for Optical Depths Retrieved by Colocated MFRSR’s and Tracking Radiometers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φ = 0 π / 2 L ( θ ) cos ( θ ) sin ( θ ) d θ ,
θ error = - π / 2 π / 2 E ( θ ) θ d θ - π / 2 π / 2 E ( θ ) d θ .
E total - horiz = E diffuse + cos ( Z ) * E direct - normal .
C ( ϕ , θ ) = 90 - ϕ 90 1 f north ( θ ) + ϕ 90 1 f east ( θ ) .
τ = C λ - a ,
( d τ τ ) = - a ( d λ λ ) .

Metrics