Abstract

Small particles ranging from approximately 0.1 μm to several micrometers in size, which include detrital material, bacteria, and other planktonic microorganisms, make a significant contribution to light scattering in the upper ocean. The scattering properties of these particles are strongly dependent on their size, which is difficult to measure in the submicrometer range with commonly used electronic resistive counters and microscopic techniques. We examined the size of small marine particles by application of the dynamic light scattering (DLS) method. In this method the time-dependent autocorrelation function of scattered intensity by particles undergoing Brownian motion provides information about the size of particles. The samples were collected in clear oceanic waters off the coast of Southern California. The mean hydrodynamic diameter of particles, determined from the DLS measurements at a scattering angle of 45°, was 0.54 μm. This indicates that the major contribution to scattering at this angle comes from submicrometer particles. We also described an inverse method for estimating the general slope of the size distribution of small marine particles from the mean hydrodynamic diameter. This method is based on calculations of the size distribution weighted by distribution from Mie theory and assumes that a power-law approximation represents the actual particle scattered intensity. These calculations suggested that particulate assemblage in our seawater samples was best characterized by a differential size distribution with a slope of −4.35. This estimation was supported by independent measurements of particle size distribution and the spectral beam attenuation coefficient taken from the same samples as those used for the DLS measurements. We also demonstrated that multiangle DLS measurements may be used to determine the representative value of the refractive index of particles.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Morel, Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 1–26 (1991).
    [CrossRef]
  2. D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
    [CrossRef]
  3. J.-C. Brun-Cottan, “Etudie de la granulométrie des particules marines, mésures effectuées avec un compteur Coulter,” Cah. Oceanogr. 23, 193–205 (1971).
  4. K. L. Carder, G. F. Beardsley, H. Pak, “Particle size distributions in the eastern equatorial Pacific,” J. Geophys. Res. 76, 5070–5077 (1971).
    [CrossRef]
  5. R. W. Sheldon, A. Prakash, W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
    [CrossRef]
  6. I. N. McCave, “Vertical flux of particles in the ocean,” Deep-Sea Res. 22, 491–502 (1975).
  7. M. Jonasz, “Particle size distributions in the Baltic,” Tellus 35B, 346–358 (1983).
    [CrossRef]
  8. J. E. Harris, “Characterization of suspended matter in the Gulf of Mexico. II. Particle size analysis of suspended matter from deep water,” Deep-Sea Res. 24, 1055–1061 (1977).
    [CrossRef]
  9. A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
    [CrossRef]
  10. M. E. Sieracki, C. L. Viles, “Distributions and fluorochrome-staining properties of sub-micrometer particles and bacteria in the North Atlantic,” Deep-Sea Res. 39, 1919–1929 (1992).
    [CrossRef]
  11. M. L. Wells, E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
    [CrossRef]
  12. H. R. Gordon, O. B. Brown, “A theoretical model of light scattering by Sargasso Sea particulates,” Limnol. Oceanogr. 17, 826–832 (1972).
    [CrossRef]
  13. O. B. Brown, H. R. Gordon, “Two component Mie scattering models of Sargasso Sea particles,” Appl. Opt. 12, 2461–2465 (1973).
    [CrossRef] [PubMed]
  14. J. R. V. Zaneveld, D. M. Roach, H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
    [CrossRef]
  15. B. E. Dahneke, ed., Measurement of Suspended Particles by Quasi-Elastic Light Scattering (Wiley, New York, 1983).
  16. R. Pecora, ed., Dynamic Light Scattering, Applications of Photon Correlation Spectroscopy (Plenum, New York, 1985).
  17. T. Provder, ed., Particle Size Distribution, Assessment and Characterization (American Chemical Society, Washington, D.C., 1987).
    [CrossRef]
  18. J. C. Thomas, “The determination of log normal particle size distributions by dynamic light scattering,” J. Colloid Interface Sci. 117, 187–192(1987).
    [CrossRef]
  19. B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Biology, Chemistry and Physics (Wiley, New York, 1976).
  20. J. H. Paul, W. H. Jeffrey, “Measurement of diameters of estuarine bacteria and particulates in natural water samples by use of a submicron particle analyzer,” Current Microbiol. 10, 7–12 (1984).
    [CrossRef]
  21. D. Stramski, M. Sedlák, D. Tsai, E. J. Amis, D. A. Kiefer, “Dynamic light scattering by cultures of heterotrophic marine bacteria,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1750, 73–75 (1992).
  22. B. Chu, Laser Light Scattering (Academic, New York, 1974).
  23. P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., Vol. 23, Ser. B of NATO Advanced Study Institute Series (Plenum, New York, 1977), pp. 45–141.
  24. N. C. Ford, “Theory and practice of correlation spectroscopy,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 31–78.
  25. H. Ruf, Y. Georgalis, E. Grell, “Dynamic light scattering to determine size distributions of vesicles,” in Methods in Enzymology, S. Fleischer, B. Fleischer, eds. (Academic, New York, 1989), Vol. 172, pp. 364–390.
    [CrossRef]
  26. J. H. Goll, G. B. Stock, “Determination of particle size distributions by use of photon correlation spectroscopy and first-order splines,” in Measurements of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 159–197.
  27. S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
    [CrossRef]
  28. S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
    [CrossRef]
  29. C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  30. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  31. S. E. Bott, “Submicrometer particle sizing by photon correlation spectroscopy: use of multiple angle detection,” in Particle Size Distribution, Assessment and Characterization, T. Provder, ed. (American Chemical Society, Washington, D.C., 1987), pp. 74–88.
    [CrossRef]
  32. R. S. Stock, W. H. Ray, “Measuring particle size distribution of latex particles using dynamic light scattering,” in Particle Size Distribution, Assessment and Characterization, T. Provder, ed. (American Chemical Society, Washington, D.C., 1987), pp. 105–114.
    [CrossRef]
  33. B. B. Weiner, “Particle sizing using photon correlation spectroscopy,” in Modern Methods of Particle Size Analysis, H. G. Barth, ed. (Wiley, New York, 1984), pp. 93–116.
  34. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, Cambridge, 1983).
  35. A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
    [CrossRef]
  36. T. A. P. Seery, J. A. Shorter, E. J. Amis, “Concurrent static and dynamic light scattering from macromolecular solutions. 1. Model systems in the low q regime,” Polymer 30, 1197–1203 (1989).
    [CrossRef]
  37. R. W. Sheldon, T. R. Parsons, Practical Manual on the Use of Coulter Counter in Marine Sciences (Coulter Electronics Sales Company, Toronto, 1967).
  38. W. Heller, R. M. Tabibian, “Experimental investigations on the light scattering of colloidal spheres. II. Sources of error in turbidity measurements,” J. Colloid Sci. 12, 25–39 (1957).
    [CrossRef]
  39. A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors for some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
    [CrossRef]
  40. J. Jakes, “Testing of the constrained regularization method of inverting Laplace transform on simulated very wide quasielastic light scattering autocorrelation functions,” Czech. J. Phys. 38, 1305–1316 (1988).
    [CrossRef]
  41. S. Bott, “Polydispersity analysis of QELS data by a smoothed inverse Laplace transform,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 129–157.
  42. I. Koike, S. Hara, K. Terauchi, K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature (London) 345, 242–243 (1990).
    [CrossRef]
  43. A. Morel, Y-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
    [CrossRef]
  44. D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 250–268 (1990).
  45. S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
    [CrossRef]
  46. H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75, 2822–2830 (1970).
    [CrossRef]
  47. K. L. Carder, R. G. Steward, P. R. Betzer, “In situ holographic measurements of the sizes and settling rates of oceanic particulates,” J. Geophys. Res. 87, 5681–5685 (1982).
    [CrossRef]
  48. A. J. Bale, A. W. Morris, “In situ measurement of particle size in estuarine waters,” Esturaine Coastal Shelf Sci. 24, 253–2263 (1987).
    [CrossRef]
  49. D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
    [CrossRef]
  50. R. G. W. Brown, J. G. Burnett, J. Mansbridge, C. I. Moir, “Miniature laser light scattering instrumentation for particle size analysis,” Appl. Opt. 29, 4159–4169 (1990).
    [CrossRef] [PubMed]

1992 (3)

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

M. E. Sieracki, C. L. Viles, “Distributions and fluorochrome-staining properties of sub-micrometer particles and bacteria in the North Atlantic,” Deep-Sea Res. 39, 1919–1929 (1992).
[CrossRef]

M. L. Wells, E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
[CrossRef]

1991 (2)

A. Morel, Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 1–26 (1991).
[CrossRef]

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

1990 (4)

I. Koike, S. Hara, K. Terauchi, K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature (London) 345, 242–243 (1990).
[CrossRef]

A. Morel, Y-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
[CrossRef]

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

R. G. W. Brown, J. G. Burnett, J. Mansbridge, C. I. Moir, “Miniature laser light scattering instrumentation for particle size analysis,” Appl. Opt. 29, 4159–4169 (1990).
[CrossRef] [PubMed]

1989 (1)

T. A. P. Seery, J. A. Shorter, E. J. Amis, “Concurrent static and dynamic light scattering from macromolecular solutions. 1. Model systems in the low q regime,” Polymer 30, 1197–1203 (1989).
[CrossRef]

1988 (3)

S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
[CrossRef]

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

J. Jakes, “Testing of the constrained regularization method of inverting Laplace transform on simulated very wide quasielastic light scattering autocorrelation functions,” Czech. J. Phys. 38, 1305–1316 (1988).
[CrossRef]

1987 (2)

A. J. Bale, A. W. Morris, “In situ measurement of particle size in estuarine waters,” Esturaine Coastal Shelf Sci. 24, 253–2263 (1987).
[CrossRef]

J. C. Thomas, “The determination of log normal particle size distributions by dynamic light scattering,” J. Colloid Interface Sci. 117, 187–192(1987).
[CrossRef]

1984 (1)

J. H. Paul, W. H. Jeffrey, “Measurement of diameters of estuarine bacteria and particulates in natural water samples by use of a submicron particle analyzer,” Current Microbiol. 10, 7–12 (1984).
[CrossRef]

1983 (2)

M. Jonasz, “Particle size distributions in the Baltic,” Tellus 35B, 346–358 (1983).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors for some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

1982 (3)

K. L. Carder, R. G. Steward, P. R. Betzer, “In situ holographic measurements of the sizes and settling rates of oceanic particulates,” J. Geophys. Res. 87, 5681–5685 (1982).
[CrossRef]

S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
[CrossRef]

S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
[CrossRef]

1977 (1)

J. E. Harris, “Characterization of suspended matter in the Gulf of Mexico. II. Particle size analysis of suspended matter from deep water,” Deep-Sea Res. 24, 1055–1061 (1977).
[CrossRef]

1975 (1)

I. N. McCave, “Vertical flux of particles in the ocean,” Deep-Sea Res. 22, 491–502 (1975).

1974 (1)

J. R. V. Zaneveld, D. M. Roach, H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

1973 (1)

1972 (2)

R. W. Sheldon, A. Prakash, W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

H. R. Gordon, O. B. Brown, “A theoretical model of light scattering by Sargasso Sea particulates,” Limnol. Oceanogr. 17, 826–832 (1972).
[CrossRef]

1971 (2)

J.-C. Brun-Cottan, “Etudie de la granulométrie des particules marines, mésures effectuées avec un compteur Coulter,” Cah. Oceanogr. 23, 193–205 (1971).

K. L. Carder, G. F. Beardsley, H. Pak, “Particle size distributions in the eastern equatorial Pacific,” J. Geophys. Res. 76, 5070–5077 (1971).
[CrossRef]

1970 (1)

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75, 2822–2830 (1970).
[CrossRef]

1957 (1)

W. Heller, R. M. Tabibian, “Experimental investigations on the light scattering of colloidal spheres. II. Sources of error in turbidity measurements,” J. Colloid Sci. 12, 25–39 (1957).
[CrossRef]

Ahn, Y-H.

A. Morel, Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 1–26 (1991).
[CrossRef]

A. Morel, Y-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
[CrossRef]

Amis, E. J.

T. A. P. Seery, J. A. Shorter, E. J. Amis, “Concurrent static and dynamic light scattering from macromolecular solutions. 1. Model systems in the low q regime,” Polymer 30, 1197–1203 (1989).
[CrossRef]

D. Stramski, M. Sedlák, D. Tsai, E. J. Amis, D. A. Kiefer, “Dynamic light scattering by cultures of heterotrophic marine bacteria,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1750, 73–75 (1992).

Bader, H.

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75, 2822–2830 (1970).
[CrossRef]

Bale, A. J.

A. J. Bale, A. W. Morris, “In situ measurement of particle size in estuarine waters,” Esturaine Coastal Shelf Sci. 24, 253–2263 (1987).
[CrossRef]

Bautista, B.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Beardsley, G. F.

K. L. Carder, G. F. Beardsley, H. Pak, “Particle size distributions in the eastern equatorial Pacific,” J. Geophys. Res. 76, 5070–5077 (1971).
[CrossRef]

Bedhomme, A. L.

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

Berne, B. J.

B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Biology, Chemistry and Physics (Wiley, New York, 1976).

Betzer, P. R.

K. L. Carder, R. G. Steward, P. R. Betzer, “In situ holographic measurements of the sizes and settling rates of oceanic particulates,” J. Geophys. Res. 87, 5681–5685 (1982).
[CrossRef]

Bird, D. F.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Boekel, H.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bott, S.

S. Bott, “Polydispersity analysis of QELS data by a smoothed inverse Laplace transform,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 129–157.

Bott, S. E.

S. E. Bott, “Submicrometer particle sizing by photon correlation spectroscopy: use of multiple angle detection,” in Particle Size Distribution, Assessment and Characterization, T. Provder, ed. (American Chemical Society, Washington, D.C., 1987), pp. 74–88.
[CrossRef]

Bricaud, A.

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors for some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

Brown, O. B.

O. B. Brown, H. R. Gordon, “Two component Mie scattering models of Sargasso Sea particles,” Appl. Opt. 12, 2461–2465 (1973).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, “A theoretical model of light scattering by Sargasso Sea particulates,” Limnol. Oceanogr. 17, 826–832 (1972).
[CrossRef]

Brown, R. G. W.

Brun-Cottan, J.-C.

J.-C. Brun-Cottan, “Etudie de la granulométrie des particules marines, mésures effectuées avec un compteur Coulter,” Cah. Oceanogr. 23, 193–205 (1971).

Burnett, J. G.

Carder, K. L.

K. L. Carder, R. G. Steward, P. R. Betzer, “In situ holographic measurements of the sizes and settling rates of oceanic particulates,” J. Geophys. Res. 87, 5681–5685 (1982).
[CrossRef]

K. L. Carder, G. F. Beardsley, H. Pak, “Particle size distributions in the eastern equatorial Pacific,” J. Geophys. Res. 76, 5070–5077 (1971).
[CrossRef]

Chisholm, S. W.

S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
[CrossRef]

Chu, B.

B. Chu, Laser Light Scattering (Academic, New York, 1974).

Dickie, P.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Eijgenraam, F.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Eisma, D.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Ford, N. C.

N. C. Ford, “Theory and practice of correlation spectroscopy,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 31–78.

Franken, H.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Georgalis, Y.

H. Ruf, Y. Georgalis, E. Grell, “Dynamic light scattering to determine size distributions of vesicles,” in Methods in Enzymology, S. Fleischer, B. Fleischer, eds. (Academic, New York, 1989), Vol. 172, pp. 364–390.
[CrossRef]

Goericke, R.

S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
[CrossRef]

Goldberg, E. D.

M. L. Wells, E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
[CrossRef]

Goll, J. H.

J. H. Goll, G. B. Stock, “Determination of particle size distributions by use of photon correlation spectroscopy and first-order splines,” in Measurements of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 159–197.

Gordon, H. R.

O. B. Brown, H. R. Gordon, “Two component Mie scattering models of Sargasso Sea particles,” Appl. Opt. 12, 2461–2465 (1973).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, “A theoretical model of light scattering by Sargasso Sea particulates,” Limnol. Oceanogr. 17, 826–832 (1972).
[CrossRef]

Grell, E.

H. Ruf, Y. Georgalis, E. Grell, “Dynamic light scattering to determine size distributions of vesicles,” in Methods in Enzymology, S. Fleischer, B. Fleischer, eds. (Academic, New York, 1989), Vol. 172, pp. 364–390.
[CrossRef]

Hara, S.

I. Koike, S. Hara, K. Terauchi, K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature (London) 345, 242–243 (1990).
[CrossRef]

Harris, J. E.

J. E. Harris, “Characterization of suspended matter in the Gulf of Mexico. II. Particle size analysis of suspended matter from deep water,” Deep-Sea Res. 24, 1055–1061 (1977).
[CrossRef]

Heller, W.

W. Heller, R. M. Tabibian, “Experimental investigations on the light scattering of colloidal spheres. II. Sources of error in turbidity measurements,” J. Colloid Sci. 12, 25–39 (1957).
[CrossRef]

Huffmann, D. R.

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jakes, J.

J. Jakes, “Testing of the constrained regularization method of inverting Laplace transform on simulated very wide quasielastic light scattering autocorrelation functions,” Czech. J. Phys. 38, 1305–1316 (1988).
[CrossRef]

Jeffrey, W. H.

J. H. Paul, W. H. Jeffrey, “Measurement of diameters of estuarine bacteria and particulates in natural water samples by use of a submicron particle analyzer,” Current Microbiol. 10, 7–12 (1984).
[CrossRef]

Jonasz, M.

M. Jonasz, “Particle size distributions in the Baltic,” Tellus 35B, 346–358 (1983).
[CrossRef]

Kalf, J.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Kepkay, P.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Kiefer, D. A.

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

D. Stramski, M. Sedlák, D. Tsai, E. J. Amis, D. A. Kiefer, “Dynamic light scattering by cultures of heterotrophic marine bacteria,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1750, 73–75 (1992).

D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 250–268 (1990).

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, Cambridge, 1983).

Kogure, K.

I. Koike, S. Hara, K. Terauchi, K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature (London) 345, 242–243 (1990).
[CrossRef]

Koike, I.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

I. Koike, S. Hara, K. Terauchi, K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature (London) 345, 242–243 (1990).
[CrossRef]

Laan, M.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Li, W. K. W.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Longhurst, A. R.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Mansbridge, J.

McCave, I. N.

I. N. McCave, “Vertical flux of particles in the ocean,” Deep-Sea Res. 22, 491–502 (1975).

Moir, C. I.

Morel, A.

A. Morel, Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 1–26 (1991).
[CrossRef]

A. Morel, Y-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
[CrossRef]

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors for some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

Morris, A. W.

A. J. Bale, A. W. Morris, “In situ measurement of particle size in estuarine waters,” Esturaine Coastal Shelf Sci. 24, 253–2263 (1987).
[CrossRef]

Olson, R. J.

S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
[CrossRef]

Pak, H.

J. R. V. Zaneveld, D. M. Roach, H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

K. L. Carder, G. F. Beardsley, H. Pak, “Particle size distributions in the eastern equatorial Pacific,” J. Geophys. Res. 76, 5070–5077 (1971).
[CrossRef]

Parsons, T. R.

R. W. Sheldon, T. R. Parsons, Practical Manual on the Use of Coulter Counter in Marine Sciences (Coulter Electronics Sales Company, Toronto, 1967).

Partensky, F.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Paul, J. H.

J. H. Paul, W. H. Jeffrey, “Measurement of diameters of estuarine bacteria and particulates in natural water samples by use of a submicron particle analyzer,” Current Microbiol. 10, 7–12 (1984).
[CrossRef]

Pecora, R.

B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Biology, Chemistry and Physics (Wiley, New York, 1976).

Prakash, A.

R. W. Sheldon, A. Prakash, W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

Prieur, L.

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors for some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

Provencher, S. W.

S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
[CrossRef]

S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
[CrossRef]

Pusey, P. N.

P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., Vol. 23, Ser. B of NATO Advanced Study Institute Series (Plenum, New York, 1977), pp. 45–141.

Ray, W. H.

R. S. Stock, W. H. Ray, “Measuring particle size distribution of latex particles using dynamic light scattering,” in Particle Size Distribution, Assessment and Characterization, T. Provder, ed. (American Chemical Society, Washington, D.C., 1987), pp. 105–114.
[CrossRef]

Roach, D. M.

J. R. V. Zaneveld, D. M. Roach, H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

Rodriguez, J.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Ruf, H.

H. Ruf, Y. Georgalis, E. Grell, “Dynamic light scattering to determine size distributions of vesicles,” in Methods in Enzymology, S. Fleischer, B. Fleischer, eds. (Academic, New York, 1989), Vol. 172, pp. 364–390.
[CrossRef]

Ruiz, J.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Schuhmacher, T.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Sedlák, M.

D. Stramski, M. Sedlák, D. Tsai, E. J. Amis, D. A. Kiefer, “Dynamic light scattering by cultures of heterotrophic marine bacteria,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1750, 73–75 (1992).

Seery, T. A. P.

T. A. P. Seery, J. A. Shorter, E. J. Amis, “Concurrent static and dynamic light scattering from macromolecular solutions. 1. Model systems in the low q regime,” Polymer 30, 1197–1203 (1989).
[CrossRef]

Sheldon, R. W.

R. W. Sheldon, A. Prakash, W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

R. W. Sheldon, T. R. Parsons, Practical Manual on the Use of Coulter Counter in Marine Sciences (Coulter Electronics Sales Company, Toronto, 1967).

Shorter, J. A.

T. A. P. Seery, J. A. Shorter, E. J. Amis, “Concurrent static and dynamic light scattering from macromolecular solutions. 1. Model systems in the low q regime,” Polymer 30, 1197–1203 (1989).
[CrossRef]

Sieracki, M. E.

M. E. Sieracki, C. L. Viles, “Distributions and fluorochrome-staining properties of sub-micrometer particles and bacteria in the North Atlantic,” Deep-Sea Res. 39, 1919–1929 (1992).
[CrossRef]

Steward, R. G.

K. L. Carder, R. G. Steward, P. R. Betzer, “In situ holographic measurements of the sizes and settling rates of oceanic particulates,” J. Geophys. Res. 87, 5681–5685 (1982).
[CrossRef]

Stock, G. B.

J. H. Goll, G. B. Stock, “Determination of particle size distributions by use of photon correlation spectroscopy and first-order splines,” in Measurements of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 159–197.

Stock, R. S.

R. S. Stock, W. H. Ray, “Measuring particle size distribution of latex particles using dynamic light scattering,” in Particle Size Distribution, Assessment and Characterization, T. Provder, ed. (American Chemical Society, Washington, D.C., 1987), pp. 105–114.
[CrossRef]

Stramski, D.

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

D. Stramski, M. Sedlák, D. Tsai, E. J. Amis, D. A. Kiefer, “Dynamic light scattering by cultures of heterotrophic marine bacteria,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1750, 73–75 (1992).

D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 250–268 (1990).

Sutcliffe, W. H.

R. W. Sheldon, A. Prakash, W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

Tabibian, R. M.

W. Heller, R. M. Tabibian, “Experimental investigations on the light scattering of colloidal spheres. II. Sources of error in turbidity measurements,” J. Colloid Sci. 12, 25–39 (1957).
[CrossRef]

Terauchi, K.

I. Koike, S. Hara, K. Terauchi, K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature (London) 345, 242–243 (1990).
[CrossRef]

Thomas, J. C.

J. C. Thomas, “The determination of log normal particle size distributions by dynamic light scattering,” J. Colloid Interface Sci. 117, 187–192(1987).
[CrossRef]

Tsai, D.

D. Stramski, M. Sedlák, D. Tsai, E. J. Amis, D. A. Kiefer, “Dynamic light scattering by cultures of heterotrophic marine bacteria,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1750, 73–75 (1992).

Vaars, A.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Van Heerwaarden, J.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Viles, C. L.

M. E. Sieracki, C. L. Viles, “Distributions and fluorochrome-staining properties of sub-micrometer particles and bacteria in the North Atlantic,” Deep-Sea Res. 39, 1919–1929 (1992).
[CrossRef]

Waterbury, J. B.

S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
[CrossRef]

Weiner, B. B.

B. B. Weiner, “Particle sizing using photon correlation spectroscopy,” in Modern Methods of Particle Size Analysis, H. G. Barth, ed. (Wiley, New York, 1984), pp. 93–116.

Wells, M.

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

Wells, M. L.

M. L. Wells, E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
[CrossRef]

Welschmeyer, N. A.

S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
[CrossRef]

Zaneveld, J. R. V.

J. R. V. Zaneveld, D. M. Roach, H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

Zettler, E. R.

S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
[CrossRef]

Appl. Opt. (2)

Cah. Oceanogr. (1)

J.-C. Brun-Cottan, “Etudie de la granulométrie des particules marines, mésures effectuées avec un compteur Coulter,” Cah. Oceanogr. 23, 193–205 (1971).

Comput. Phys. Commun. (2)

S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
[CrossRef]

S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
[CrossRef]

Current Microbiol. (1)

J. H. Paul, W. H. Jeffrey, “Measurement of diameters of estuarine bacteria and particulates in natural water samples by use of a submicron particle analyzer,” Current Microbiol. 10, 7–12 (1984).
[CrossRef]

Czech. J. Phys. (1)

J. Jakes, “Testing of the constrained regularization method of inverting Laplace transform on simulated very wide quasielastic light scattering autocorrelation functions,” Czech. J. Phys. 38, 1305–1316 (1988).
[CrossRef]

Deep-Sea Res. (4)

J. E. Harris, “Characterization of suspended matter in the Gulf of Mexico. II. Particle size analysis of suspended matter from deep water,” Deep-Sea Res. 24, 1055–1061 (1977).
[CrossRef]

A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, D. F. Bird, “Sub-micron particles in northwest Atlantic shelf-water,” Deep-Sea Res. 39, 1–7 (1992).
[CrossRef]

M. E. Sieracki, C. L. Viles, “Distributions and fluorochrome-staining properties of sub-micrometer particles and bacteria in the North Atlantic,” Deep-Sea Res. 39, 1919–1929 (1992).
[CrossRef]

I. N. McCave, “Vertical flux of particles in the ocean,” Deep-Sea Res. 22, 491–502 (1975).

Esturaine Coastal Shelf Sci. (1)

A. J. Bale, A. W. Morris, “In situ measurement of particle size in estuarine waters,” Esturaine Coastal Shelf Sci. 24, 253–2263 (1987).
[CrossRef]

J. Colloid Interface Sci. (1)

J. C. Thomas, “The determination of log normal particle size distributions by dynamic light scattering,” J. Colloid Interface Sci. 117, 187–192(1987).
[CrossRef]

J. Colloid Sci. (1)

W. Heller, R. M. Tabibian, “Experimental investigations on the light scattering of colloidal spheres. II. Sources of error in turbidity measurements,” J. Colloid Sci. 12, 25–39 (1957).
[CrossRef]

J. Geophys. Res. (4)

J. R. V. Zaneveld, D. M. Roach, H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974).
[CrossRef]

K. L. Carder, G. F. Beardsley, H. Pak, “Particle size distributions in the eastern equatorial Pacific,” J. Geophys. Res. 76, 5070–5077 (1971).
[CrossRef]

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75, 2822–2830 (1970).
[CrossRef]

K. L. Carder, R. G. Steward, P. R. Betzer, “In situ holographic measurements of the sizes and settling rates of oceanic particulates,” J. Geophys. Res. 87, 5681–5685 (1982).
[CrossRef]

J. Mar. Res. (2)

A. Morel, Y-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
[CrossRef]

A. Morel, Y-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 1–26 (1991).
[CrossRef]

J. Plankton Res. (1)

A. Bricaud, A. L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

Limnol. Oceanogr. (3)

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors for some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

R. W. Sheldon, A. Prakash, W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972).
[CrossRef]

H. R. Gordon, O. B. Brown, “A theoretical model of light scattering by Sargasso Sea particulates,” Limnol. Oceanogr. 17, 826–832 (1972).
[CrossRef]

Mar. Chem. (1)

M. L. Wells, E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992).
[CrossRef]

Nature (London) (2)

I. Koike, S. Hara, K. Terauchi, K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature (London) 345, 242–243 (1990).
[CrossRef]

S. W. Chisholm, R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, N. A. Welschmeyer, “A novel free-living prochlorophyte abundant in the oceanic euphotic zone,” Nature (London) 334, 340–343 (1988).
[CrossRef]

Neth. J. Sea Res. (1)

D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, J. Kalf, “A camera and image-analysis system for in situ observation of flocs in natural waters,” Neth. J. Sea Res. 27, 43–56 (1990).
[CrossRef]

Polymer (1)

T. A. P. Seery, J. A. Shorter, E. J. Amis, “Concurrent static and dynamic light scattering from macromolecular solutions. 1. Model systems in the low q regime,” Polymer 30, 1197–1203 (1989).
[CrossRef]

Prog. Oceanogr. (1)

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Tellus (1)

M. Jonasz, “Particle size distributions in the Baltic,” Tellus 35B, 346–358 (1983).
[CrossRef]

Other (19)

B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Biology, Chemistry and Physics (Wiley, New York, 1976).

B. E. Dahneke, ed., Measurement of Suspended Particles by Quasi-Elastic Light Scattering (Wiley, New York, 1983).

R. Pecora, ed., Dynamic Light Scattering, Applications of Photon Correlation Spectroscopy (Plenum, New York, 1985).

T. Provder, ed., Particle Size Distribution, Assessment and Characterization (American Chemical Society, Washington, D.C., 1987).
[CrossRef]

R. W. Sheldon, T. R. Parsons, Practical Manual on the Use of Coulter Counter in Marine Sciences (Coulter Electronics Sales Company, Toronto, 1967).

D. Stramski, M. Sedlák, D. Tsai, E. J. Amis, D. A. Kiefer, “Dynamic light scattering by cultures of heterotrophic marine bacteria,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1750, 73–75 (1992).

B. Chu, Laser Light Scattering (Academic, New York, 1974).

P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., Vol. 23, Ser. B of NATO Advanced Study Institute Series (Plenum, New York, 1977), pp. 45–141.

N. C. Ford, “Theory and practice of correlation spectroscopy,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 31–78.

H. Ruf, Y. Georgalis, E. Grell, “Dynamic light scattering to determine size distributions of vesicles,” in Methods in Enzymology, S. Fleischer, B. Fleischer, eds. (Academic, New York, 1989), Vol. 172, pp. 364–390.
[CrossRef]

J. H. Goll, G. B. Stock, “Determination of particle size distributions by use of photon correlation spectroscopy and first-order splines,” in Measurements of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 159–197.

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

S. E. Bott, “Submicrometer particle sizing by photon correlation spectroscopy: use of multiple angle detection,” in Particle Size Distribution, Assessment and Characterization, T. Provder, ed. (American Chemical Society, Washington, D.C., 1987), pp. 74–88.
[CrossRef]

R. S. Stock, W. H. Ray, “Measuring particle size distribution of latex particles using dynamic light scattering,” in Particle Size Distribution, Assessment and Characterization, T. Provder, ed. (American Chemical Society, Washington, D.C., 1987), pp. 105–114.
[CrossRef]

B. B. Weiner, “Particle sizing using photon correlation spectroscopy,” in Modern Methods of Particle Size Analysis, H. G. Barth, ed. (Wiley, New York, 1984), pp. 93–116.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, Cambridge, 1983).

S. Bott, “Polydispersity analysis of QELS data by a smoothed inverse Laplace transform,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1983), pp. 129–157.

D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 250–268 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical normalized field autocorrelation function (data points and fitted curve) obtained from a DLS measurement at a scattering angle of 45° of the natural seawater sample. The corresponding distribution of decay times is plotted as the product τcFc) (in arbitrary units) to give an equal area representation along the log(τc) axis.40 The values for the mean characteristic decay time and hydrodynamic diameter associated with the Brownian peak in the distribution Fc) are given.

Fig. 2
Fig. 2

Mean diameter of particles, D ̅ M, of the scattered-intensity-weighted size distribution as a function of the slope of the size distribution [calculated from Eq. (10)]. Each curve represents a different value of the relative refractive index n of the particles: 1.02, 1.045, 1.07, 1.15, and 1.2 (the n values for the extreme curves are indicated). The inputs into the calculations, which include the scattering angle θ, the light wavelength λ, the imaginary part of refractive index n′, and the lower and the upper size limits of the power function representing size distribution F(D), are indicated.

Fig. 3
Fig. 3

Cumulative particle size distribution represented by a power function (solid line) compared with Coulter counter measurements of particle sizes in seawater samples (data points). Note that the slope of −3.35 for the cumulative distributiond N>D implies that the slope for the differential distribution, F(D), is −4.35. The solid line is not the best fit to the data but is merely given for the purpose of comparison with data points. N>D is in arbitrary units.

Fig. 4
Fig. 4

Comparison of the measured spectrum of the beam attenuation coefficient of particles in seawater with the spectrum calculated from Mie theory for F(D) ∼ D−4.35, n = 1.045, and n′ = 0. The calculated spectrum is normalized to the observed value of 350 nm to permit comparison of spectral shape. Both curves oxhibit very similar dependence on light wavelength, as indicated by the power function.

Fig. 5
Fig. 5

a, Changes in the spectral shape of the beam attenuation coefficient c(λ) in response to varying slope s of the particle size distribution as calculated from Mie theory. The curves represent s values of −4.7, −4.5, −4.35, −4.2, and −4.0 from the lowest to the highest curve (the s values for the extreme curves are indicated, and the middle curve is identical with the solid curve in Fig. 4). The assumed refractive index of the particles is n(λ) = 1.045 and n′(λ) = 0. b, Changes in the spectral shape of c(λ) in response to varying the real part of the refractive index n of the particles. The curves represent the n values of 1.02, 1.045, 1.07, 1.15, and 1.2 from the lowest to the highest curve (the n values for the extreme curves are indicated, and the curve that is second from the lowest is identical with the solid curve in Fig. 4). The assumed particle size distribution is F(D) ∼ D−4.35, and n′(λ) = 0. All curves are normalized to the measured value of c (350), as shown in Fig. 4.

Fig. 6
Fig. 6

Density function (solid curve) and the cumulative function (dotted curve) of the scattered-intensity-weighted size distribution of particles in seawater samples as simulated with Mie scattering calculations. The scattering angle, light wavelength, refractive index of the particles, and parameters of the particle size distribution used in these calculations are indicated. Although the size range from 0.1 to 8 μm was included in the calculations, the graph is truncated at 3 μm because the contribution to scattering by particles >3 μm in size was only approximately 2%. The arrow indicates the mean diameter of particles, D ̅ M = 0.543 μ m, derived from the calculated distribution [Eq. (10)], and D ̅ M coincides with the mean hydrodynamic diameter ( D ̅ H ) from the DLS measurements. The mode and the median of the distribution are 0.31 and 0.345 μm, respectively.

Fig. 7
Fig. 7

Scattered intensity of vertically polarized light versus particle diameter as calculated from Mie theory (solid curve). The inputs into the Mie calculations are indicated. The power function F(D) ∼ D−4.35 representing the particle size distribution is also plotted. This function is given in arbitrary units and was scaled to a value of 1.5 × 102 at D = 0.1 μm.

Fig. 8
Fig. 8

Same as Fig. 2 but for the scattering angle θ = 120°. The values of the refractive index n are indicated for the two extreme curves. The values of n for the remaining curves are, from lowest to highest, 1.045, 1.07, and 1.15.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| g ( 1 ) ( τ ) | = 0 F ( Γ ) exp ( Γ τ ) d Γ ,
F ( Γ ) d Γ = F ( D ) I 1 ( D ) d D 0 F ( D ) I 1 ( D ) d D ,
F ( Γ ) d Γ = F ( τ c ) d τ c ,
| g ( 1 ) ( τ ) | = 0 F ( τ c ) exp ( τ / τ c ) d τ c .
τ ̅ c = τ c min τ c max τ c F ( τ c ) d τ c τ c min τ c max F ( τ c ) d τ c ,
Γ = 1 τ c = D T q 2 ,
q = 4 π n w λ sin θ 2 .
D H = k T 3 π η D T = k T q 2 3 π η τ c ,
τ ̅ c = 3 π η k T q 2 D H min D H max D H F ( D H ) I 1 ( D H ) d D H D H min D H max F ( D H ) I 1 ( D H ) d D H = 3 π η k T q 2 D ̅ H .
D ̅ M = D min D max D F ( D ) i 1 ( D , θ , n , n ) d D D min D max F ( D ) i 1 ( D , θ , n , n ) d D ,
c ( λ ) = D min D max Q c ( λ , D , n ) ( π D 2 / 4 ) F ( D ) d D ,

Metrics