Abstract

During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22° halo-producing cirrus clouds were studied jointly from a ground-based polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations, and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow-ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen, A. J. Heymsfield, D. O'C Starr, “Is there a cirrus small particle radiative anomaly?” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. J91–J95.
  2. V. J. Schaefer, “A method for making snowflake replicas,” Science 93, 239–240 (1941).
    [CrossRef] [PubMed]
  3. H. K. Weickman, “Die Eisphase in der Atmosphär,” Lib. Trans.273 (Royal Aircraft Establishment, Farnsborough, UK, 1947).
  4. A. J. Heymsfield, R. G. Knollenberg, “Properties of cirrus generating cells,” J. Atmos. Sci. 29, 1358–1366 (1972).
    [CrossRef]
  5. P. A. Spyers-Duran, R. R. Braham, “An airborne continuous cloud particle replicator,” J. Appl. Meteorol. 6, 1108–1113 (1967).
    [CrossRef]
  6. C. Magono, S. Tazawa, “Design of snow crystal sondes,” J. Atmos. Sci. 23, 618–625 (1966).
    [CrossRef]
  7. D. O'C Starr, “A cirrus-cloud experiment: Intensive field observations planned for FIRE,” Bull. Am. Meteorol. Soc. 68, 119–124 (1987).
    [CrossRef]
  8. K. Sassen, C. J. Grund, J. D. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Wea. Rev. 118, 2288–2311 (1990).
    [CrossRef]
  9. A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
    [CrossRef]
  10. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
    [CrossRef]
  11. The November 1990 (Vol. 118) issue of the Monthly Weather Review compiles a number of related articles from this cirrus cloud case study.
  12. N. C. Knight, “No two alike,” Bull. Am. Meteorol. Soc. 69, 496 (1988).
  13. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus cloud. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  14. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. (to be published).
  15. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980).
  16. R. A. R. Tricker, Ice Crystal Haloes (Optical Society of America, Washington, D.C., 1979).
  17. M. Glass, D. J. Varley, “Observations of cirrus particle characteristics occurring with halos,” in Preprints of the Conference on Cloud Physics and Atmospheric Electricity (American Meteorological Society, Boston, Mass., 1978), pp. 126–128.
  18. According to the laboratory studies reported in K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979), minimum ice-crystal dimensions of ∼25 μm are needed for generating halos.
    [CrossRef]
  19. K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).
  20. K. Sassen, “Polarization and Brewster angle properties of light pillars,” J. Opt. Soc. Am. A 4, 570–580 (1987).
    [CrossRef]

1991

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

1990

K. Sassen, C. J. Grund, J. D. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Wea. Rev. 118, 2288–2311 (1990).
[CrossRef]

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

1989

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus cloud. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

1988

N. C. Knight, “No two alike,” Bull. Am. Meteorol. Soc. 69, 496 (1988).

1987

D. O'C Starr, “A cirrus-cloud experiment: Intensive field observations planned for FIRE,” Bull. Am. Meteorol. Soc. 68, 119–124 (1987).
[CrossRef]

K. Sassen, “Polarization and Brewster angle properties of light pillars,” J. Opt. Soc. Am. A 4, 570–580 (1987).
[CrossRef]

1980

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

1979

According to the laboratory studies reported in K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979), minimum ice-crystal dimensions of ∼25 μm are needed for generating halos.
[CrossRef]

1972

A. J. Heymsfield, R. G. Knollenberg, “Properties of cirrus generating cells,” J. Atmos. Sci. 29, 1358–1366 (1972).
[CrossRef]

1967

P. A. Spyers-Duran, R. R. Braham, “An airborne continuous cloud particle replicator,” J. Appl. Meteorol. 6, 1108–1113 (1967).
[CrossRef]

1966

C. Magono, S. Tazawa, “Design of snow crystal sondes,” J. Atmos. Sci. 23, 618–625 (1966).
[CrossRef]

1941

V. J. Schaefer, “A method for making snowflake replicas,” Science 93, 239–240 (1941).
[CrossRef] [PubMed]

Alvarez, J. M.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Wea. Rev. 118, 2288–2311 (1990).
[CrossRef]

Braham, R. R.

P. A. Spyers-Duran, R. R. Braham, “An airborne continuous cloud particle replicator,” J. Appl. Meteorol. 6, 1108–1113 (1967).
[CrossRef]

Glass, M.

M. Glass, D. J. Varley, “Observations of cirrus particle characteristics occurring with halos,” in Preprints of the Conference on Cloud Physics and Atmospheric Electricity (American Meteorological Society, Boston, Mass., 1978), pp. 126–128.

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980).

Grund, C. J.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Wea. Rev. 118, 2288–2311 (1990).
[CrossRef]

Hardesty, M.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Wea. Rev. 118, 2288–2311 (1990).
[CrossRef]

Heymsfield, A. J.

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

A. J. Heymsfield, R. G. Knollenberg, “Properties of cirrus generating cells,” J. Atmos. Sci. 29, 1358–1366 (1972).
[CrossRef]

K. Sassen, A. J. Heymsfield, D. O'C Starr, “Is there a cirrus small particle radiative anomaly?” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. J91–J95.

Knight, N. C.

N. C. Knight, “No two alike,” Bull. Am. Meteorol. Soc. 69, 496 (1988).

Knollenberg, R. G.

A. J. Heymsfield, R. G. Knollenberg, “Properties of cirrus generating cells,” J. Atmos. Sci. 29, 1358–1366 (1972).
[CrossRef]

Liou, K. N.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus cloud. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

According to the laboratory studies reported in K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979), minimum ice-crystal dimensions of ∼25 μm are needed for generating halos.
[CrossRef]

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. (to be published).

Magono, C.

C. Magono, S. Tazawa, “Design of snow crystal sondes,” J. Atmos. Sci. 23, 618–625 (1966).
[CrossRef]

Miller, K. M.

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

Sassen, K.

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

K. Sassen, C. J. Grund, J. D. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Wea. Rev. 118, 2288–2311 (1990).
[CrossRef]

K. Sassen, “Polarization and Brewster angle properties of light pillars,” J. Opt. Soc. Am. A 4, 570–580 (1987).
[CrossRef]

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

According to the laboratory studies reported in K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979), minimum ice-crystal dimensions of ∼25 μm are needed for generating halos.
[CrossRef]

K. Sassen, A. J. Heymsfield, D. O'C Starr, “Is there a cirrus small particle radiative anomaly?” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. J91–J95.

Schaefer, V. J.

V. J. Schaefer, “A method for making snowflake replicas,” Science 93, 239–240 (1941).
[CrossRef] [PubMed]

Spinhirne, J. D.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Wea. Rev. 118, 2288–2311 (1990).
[CrossRef]

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

Spyers-Duran, P. A.

P. A. Spyers-Duran, R. R. Braham, “An airborne continuous cloud particle replicator,” J. Appl. Meteorol. 6, 1108–1113 (1967).
[CrossRef]

Starr, O'C

D. O'C Starr, “A cirrus-cloud experiment: Intensive field observations planned for FIRE,” Bull. Am. Meteorol. Soc. 68, 119–124 (1987).
[CrossRef]

K. Sassen, A. J. Heymsfield, D. O'C Starr, “Is there a cirrus small particle radiative anomaly?” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. J91–J95.

Takano, Y.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus cloud. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. (to be published).

Tazawa, S.

C. Magono, S. Tazawa, “Design of snow crystal sondes,” J. Atmos. Sci. 23, 618–625 (1966).
[CrossRef]

Tricker, R. A. R.

R. A. R. Tricker, Ice Crystal Haloes (Optical Society of America, Washington, D.C., 1979).

Varley, D. J.

M. Glass, D. J. Varley, “Observations of cirrus particle characteristics occurring with halos,” in Preprints of the Conference on Cloud Physics and Atmospheric Electricity (American Meteorological Society, Boston, Mass., 1978), pp. 126–128.

Weickman, H. K.

H. K. Weickman, “Die Eisphase in der Atmosphär,” Lib. Trans.273 (Royal Aircraft Establishment, Farnsborough, UK, 1947).

Bull. Am. Meteorol. Soc.

D. O'C Starr, “A cirrus-cloud experiment: Intensive field observations planned for FIRE,” Bull. Am. Meteorol. Soc. 68, 119–124 (1987).
[CrossRef]

N. C. Knight, “No two alike,” Bull. Am. Meteorol. Soc. 69, 496 (1988).

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

J. Appl. Meteorol.

P. A. Spyers-Duran, R. R. Braham, “An airborne continuous cloud particle replicator,” J. Appl. Meteorol. 6, 1108–1113 (1967).
[CrossRef]

J. Atmos. Sci.

C. Magono, S. Tazawa, “Design of snow crystal sondes,” J. Atmos. Sci. 23, 618–625 (1966).
[CrossRef]

A. J. Heymsfield, R. G. Knollenberg, “Properties of cirrus generating cells,” J. Atmos. Sci. 29, 1358–1366 (1972).
[CrossRef]

According to the laboratory studies reported in K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed phase and ice clouds. Part I: Angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979), minimum ice-crystal dimensions of ∼25 μm are needed for generating halos.
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus cloud. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

J. Meteorol. Soc. Jpn.

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

J. Opt. Soc. Am. A

Mon. Wea. Rev.

K. Sassen, C. J. Grund, J. D. Spinhirne, M. Hardesty, J. M. Alvarez, “The 27–28 October 1986 FIRE IFO cirrus case study: a five lidar overview of cloud structure and evolution,” Mon. Wea. Rev. 118, 2288–2311 (1990).
[CrossRef]

Mon. Weather Rev.

A. J. Heymsfield, K. M. Miller, J. D. Spinhirne, “The 27–28 October FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313–2328 (1990).
[CrossRef]

Science

V. J. Schaefer, “A method for making snowflake replicas,” Science 93, 239–240 (1941).
[CrossRef] [PubMed]

Other

H. K. Weickman, “Die Eisphase in der Atmosphär,” Lib. Trans.273 (Royal Aircraft Establishment, Farnsborough, UK, 1947).

K. Sassen, A. J. Heymsfield, D. O'C Starr, “Is there a cirrus small particle radiative anomaly?” in Preprints of the Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. J91–J95.

The November 1990 (Vol. 118) issue of the Monthly Weather Review compiles a number of related articles from this cirrus cloud case study.

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. (to be published).

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980).

R. A. R. Tricker, Ice Crystal Haloes (Optical Society of America, Washington, D.C., 1979).

M. Glass, D. J. Varley, “Observations of cirrus particle characteristics occurring with halos,” in Preprints of the Conference on Cloud Physics and Atmospheric Electricity (American Meteorological Society, Boston, Mass., 1978), pp. 126–128.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Examples of 180° fish-eye photographs of cirrus cloud conditions at (a) 1556, 22 October; (b) 1750, 28 October; (c) 1950, 1 November, (d) 2030, 2 November 1986. The 22° halos were often incomplete as a result of multiple scattering and attenuation effects in optically dense particle fallstreaks, especially close to the horizon because of the increased scattering path lengths. The times above are in UTC.

Fig. 2
Fig. 2

Combined polarization lidar and in situ data displays that cover the indicated 2-h period of the King Air mission on 22 October 1986; they consist of lidar range-normalized returned energy (top left), linear depolarization ratio (top right; see δ value key) HTI displays, and panels of aircraft-derived ice-crystal concentration Ni, ice-mass content Mi, temperature T, and relative humidity RHw. Curves superimposed on the lidar HTI displays show the supporting aircraft flight track, where the heavy curve segments indicate radial distances from Wausau of < 20 km, and the open circles show the times the ice-crystal samples in Fig. 3 (as identified by the letters at top) were collected. Note that the blank regions in the δ display represent the rejection of inaccurate ratios caused by noise in weak signals or off-scale signals in strongly scattering parts of the cirrus cloud.

Fig. 3
Fig. 3

Representative ice-crystal photomicrographs obtained by impaction on slides (as identified in Fig. 2, top) at the following heights (in kilometers) and temperatures (in degrees centigrade), respectively: a, 7.32, −26.6; b, 7.63, −29.3; c, 7.32, −26.9; d, 7.32, −26.8; e, 7.94, −31.6; f, 8.54, −37.1; g, 6.86, −25.0; h, 6.34, −2.28; i, 6.13, −20.0. Note the 250-μm reference scale in c.

Fig. 4
Fig. 4

Combined lidar and aircraft data display as in Fig. 2, but showing the results of the aircraft mission at the indicated times on 28 October 1986.

Fig. 5
Fig. 5

Ice-crystal photomicrographs obtained (see Fig. 4, top) at the following heights (in kilometers) and temperatures (in degrees centigrade), respectively: a, 6.13, −20.0; b, c, 6.38, −22.2; d, 6.38, −22.2; e, 7.01, −26.9; f, 7.34, −29.8; g, 7.62, −32.2; h, 7.26, −29.2; i, 6.72, −25.2. A 250-μm scale is provided in i.

Fig. 6
Fig. 6

Combined lidar and aircraft data display as in Fig. 2, but showing the results of the aircraft mission at the indicated times on 1 November 1986.

Fig. 7
Fig. 7

Ice crystal photomicrograph obtained (see Fig. 6, top) at the following heights (in kilometers) and temperatures (in degrees centigrade), respectively: a, 7.15, −29.3; b, 6.15, −21.9; c, 5.58, −19.3; d, 4.84, −17.6; e, 4.78, −17.3; f, 5.34, −18.8; g, 5.76, −20.4; h, 6.10, −21.6; i, 6.70, −25.7; j, 7.32, −30.6; k, 7.31, −30.6; li, 7.91, −35.1; lii, 8.54, −40.4; liii, 9.15, −44.9; mi, 8.88, −42.5; mii, 8.49, −39.1; miii, 8.03, −35.7; n, 7.53, −32.2; o,7.00, −28.3; p, 6.60, −25.4; q, 6.19, −22.6; r, 5.49, −19.7; s, 5.17, −19.9; t, 4.75, −16.1. The 250-μm scale in t applies to all particles.

Fig. 8
Fig. 8

Combined lidar and aircraft data display as in Fig. 2, but showing the results of the aircraft mission at the indicated times on 2 November 1986. Note that 2D-C and 2D-P probe data are missing from 2025 to 2046 and after 2123.

Fig. 9
Fig. 9

Ice-crystal photomicrographs obtained (see Fig. 8, top) at the following heights (in kilometers) and temperatures (in degrees centigrade), respectively: a, 8.84, −46.3; b, 7.70, −36.7; c, 7.12, −31.9; d, 6.34, −26.5; e, 5.80, −23.8; f, 5.27, −21.9; g, 4.77, −18.9; h, 4.76, −18.5; i, 5.49, −21.8; j, 5.71, −22.5; k, 6.10, −24.5; 1, 6.10, −24.8; m, 6.70, −29.3; n, 7.93, −39.6; o, 6.79, -30.9; p, 5.30, −20.2. Scale is provided in p.

Fig. 10
Fig. 10

Comparison of ray-tracing-predicted phase functions P11 for randomly oriented hexagonal solid and hollow-ended columns (see inserts) computed for a 0.55-μm wavelength. Both column models are 200 μm in length and 80 μm in maximum width: the depths d of the hollow ends are 50 μm.

Fig. 11
Fig. 11

Comparison of ray-tracing-predicted phase functions, again at a 0.55-μm wavelength between randomly oriented solid columns and bullet rosettes (see inserts). Each of the four solid bullets (aligned radially in the same plane) is 60 μm in width and 240 μm in total length, inclusive of the 48-μm-long pointd bullet tip. The 200-μm length and 100-μm width of the columns are based on a projected area that is equal to that of the randomly oriented bullet rosettes.

Metrics