Abstract

One of the many calibrations performed for a scientific-quality spectrometer is the characterization of its scattered-light properties. The scattered light can arise from any optical surface, and light leaks or scattering from baffles can also contribute to the instrumental stray-light level. For a diffraction-grating spectrometer the primary contribution to instrumental scattered light has been found to be the scattered light from the grating. The results from measuring the scattered-light properties of 10 diffraction gratings are discussed along with the application of these results in analyzing the total scattered light measured for three spectrometers. It has been found from these measurements that there are two components of the grating scattered light: a Lorentzian-type component and a constant background component. The Lorentzian component is predicted from the diffraction theory for a grating, and the constant background component is consistent with Rayleigh scattering from the microscopic surface imperfections. It was also discovered that multiple replicas of gratings from the same master grating exhibit significantly more scattered light than the preceding replica by factors of 1.1–2.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767–773 (1965).
    [CrossRef]
  2. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9, 1474–1475 (1970).
    [CrossRef] [PubMed]
  3. H. von Helmholtz, Helmholtz’s Treatise on Physiological Optics, translated from the third German edition, J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 230–231.
  4. J. C. Stover, Optical Scattering Measurement and Analysis (McGraw-Hill, New York, 1990), Chap. 3, pp. 56–59; App. B, pp. 215–220.
  5. D. Cotton, S. Chakrabarti, J. Edelstein, “EUV properties of two diffraction gratings,” in Ultraviolet Technology II, R. E. Huffman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 932, 161–168 (1988).
  6. J. F. Verrill, “The specification and measurement of scattered light from diffraction gratings,” Opt. Acta 25, 531–547 (1978).
    [CrossRef]
  7. G. I. Geikas, “Stray light from diffraction gratings,” in Stray Radiation V, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 675, 140–151 (1986).
  8. G. H. Mount, W. G. Fastie, “Comprehensive analysis of gratings for ultraviolet space instrumentation,” Appl. Opt. 17, 3108–3116 (1978).
    [CrossRef] [PubMed]
  9. G. Basri, J. T. Clarke, B. M. Haisch, “An analysis of scattered light in low dispersion IUE spectra,” Astron. Astrophys. 144, 161–170 (1985).
  10. J. A. Cardelli, D. C. Ebbets, B. D. Savage, “Scattered light in the echelle modes of the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. I. Analysis of the prelaunch calibration data,” Astrophys. J. 365, 789–802 (1990).
    [CrossRef]
  11. T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
    [CrossRef]
  12. G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar stellar irradiance comparison experiment I: 1. Instrument design and operation,” J. Geophys. Res. 98, 10,667–10,677 (1993).
    [CrossRef]
  13. T. N. Woods, G. J. Ucker, G. J. Rottman, “Solar stellar irradiance comparison experiment I: 2. Instrument calibrations,” J. Geophys. Res. 98, 10,679–10,694 (1993).
    [CrossRef]
  14. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech, Norwood, Mass., 1987), Chap. 4, pp. 34–69.
  15. J. E. Harvey, “Light scattering characteristics of optical surfaces,” in Stray Light Problems in Optical Systems, J. D. Lytle, H. E. Morrow, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 107, 41–47 (1977).
  16. J. C. Stover, J. Rifkin, D. R. Cheever, K. H. Kirchner, T. F. Schiff, “Comparison of wavelength scaling data to experiment,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 967, 44–54(1988).
  17. D. Dravins, “High-dispersion astronomical spectroscopy with holographic and ruled diffraction gratings,” Appl. Opt. 17, 404–414 (1978).
    [CrossRef] [PubMed]

1993

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar stellar irradiance comparison experiment I: 1. Instrument design and operation,” J. Geophys. Res. 98, 10,667–10,677 (1993).
[CrossRef]

T. N. Woods, G. J. Ucker, G. J. Rottman, “Solar stellar irradiance comparison experiment I: 2. Instrument calibrations,” J. Geophys. Res. 98, 10,679–10,694 (1993).
[CrossRef]

1990

J. A. Cardelli, D. C. Ebbets, B. D. Savage, “Scattered light in the echelle modes of the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. I. Analysis of the prelaunch calibration data,” Astrophys. J. 365, 789–802 (1990).
[CrossRef]

T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
[CrossRef]

1985

G. Basri, J. T. Clarke, B. M. Haisch, “An analysis of scattered light in low dispersion IUE spectra,” Astron. Astrophys. 144, 161–170 (1985).

1978

1970

1965

Basri, G.

G. Basri, J. T. Clarke, B. M. Haisch, “An analysis of scattered light in low dispersion IUE spectra,” Astron. Astrophys. 144, 161–170 (1985).

Beckmann, P.

P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech, Norwood, Mass., 1987), Chap. 4, pp. 34–69.

Cardelli, J. A.

J. A. Cardelli, D. C. Ebbets, B. D. Savage, “Scattered light in the echelle modes of the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. I. Analysis of the prelaunch calibration data,” Astrophys. J. 365, 789–802 (1990).
[CrossRef]

Chakrabarti, S.

D. Cotton, S. Chakrabarti, J. Edelstein, “EUV properties of two diffraction gratings,” in Ultraviolet Technology II, R. E. Huffman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 932, 161–168 (1988).

Cheever, D. R.

J. C. Stover, J. Rifkin, D. R. Cheever, K. H. Kirchner, T. F. Schiff, “Comparison of wavelength scaling data to experiment,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 967, 44–54(1988).

Clarke, J. T.

G. Basri, J. T. Clarke, B. M. Haisch, “An analysis of scattered light in low dispersion IUE spectra,” Astron. Astrophys. 144, 161–170 (1985).

Cotton, D.

D. Cotton, S. Chakrabarti, J. Edelstein, “EUV properties of two diffraction gratings,” in Ultraviolet Technology II, R. E. Huffman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 932, 161–168 (1988).

Dravins, D.

Ebbets, D. C.

J. A. Cardelli, D. C. Ebbets, B. D. Savage, “Scattered light in the echelle modes of the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. I. Analysis of the prelaunch calibration data,” Astrophys. J. 365, 789–802 (1990).
[CrossRef]

Edelstein, J.

D. Cotton, S. Chakrabarti, J. Edelstein, “EUV properties of two diffraction gratings,” in Ultraviolet Technology II, R. E. Huffman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 932, 161–168 (1988).

Fastie, W. G.

Geikas, G. I.

G. I. Geikas, “Stray light from diffraction gratings,” in Stray Radiation V, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 675, 140–151 (1986).

Haisch, B. M.

G. Basri, J. T. Clarke, B. M. Haisch, “An analysis of scattered light in low dispersion IUE spectra,” Astron. Astrophys. 144, 161–170 (1985).

Harvey, J. E.

J. E. Harvey, “Light scattering characteristics of optical surfaces,” in Stray Light Problems in Optical Systems, J. D. Lytle, H. E. Morrow, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 107, 41–47 (1977).

Kirchner, K. H.

J. C. Stover, J. Rifkin, D. R. Cheever, K. H. Kirchner, T. F. Schiff, “Comparison of wavelength scaling data to experiment,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 967, 44–54(1988).

Mount, G. H.

Nicodemus, F. E.

Rifkin, J.

J. C. Stover, J. Rifkin, D. R. Cheever, K. H. Kirchner, T. F. Schiff, “Comparison of wavelength scaling data to experiment,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 967, 44–54(1988).

Rottman, G. J.

T. N. Woods, G. J. Ucker, G. J. Rottman, “Solar stellar irradiance comparison experiment I: 2. Instrument calibrations,” J. Geophys. Res. 98, 10,679–10,694 (1993).
[CrossRef]

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar stellar irradiance comparison experiment I: 1. Instrument design and operation,” J. Geophys. Res. 98, 10,667–10,677 (1993).
[CrossRef]

T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
[CrossRef]

Savage, B. D.

J. A. Cardelli, D. C. Ebbets, B. D. Savage, “Scattered light in the echelle modes of the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. I. Analysis of the prelaunch calibration data,” Astrophys. J. 365, 789–802 (1990).
[CrossRef]

Schiff, T. F.

J. C. Stover, J. Rifkin, D. R. Cheever, K. H. Kirchner, T. F. Schiff, “Comparison of wavelength scaling data to experiment,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 967, 44–54(1988).

Sparn, T. P.

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar stellar irradiance comparison experiment I: 1. Instrument design and operation,” J. Geophys. Res. 98, 10,667–10,677 (1993).
[CrossRef]

Spizzichino, A.

P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech, Norwood, Mass., 1987), Chap. 4, pp. 34–69.

Stover, J. C.

J. C. Stover, J. Rifkin, D. R. Cheever, K. H. Kirchner, T. F. Schiff, “Comparison of wavelength scaling data to experiment,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 967, 44–54(1988).

J. C. Stover, Optical Scattering Measurement and Analysis (McGraw-Hill, New York, 1990), Chap. 3, pp. 56–59; App. B, pp. 215–220.

Ucker, G. J.

T. N. Woods, G. J. Ucker, G. J. Rottman, “Solar stellar irradiance comparison experiment I: 2. Instrument calibrations,” J. Geophys. Res. 98, 10,679–10,694 (1993).
[CrossRef]

Verrill, J. F.

J. F. Verrill, “The specification and measurement of scattered light from diffraction gratings,” Opt. Acta 25, 531–547 (1978).
[CrossRef]

von Helmholtz, H.

H. von Helmholtz, Helmholtz’s Treatise on Physiological Optics, translated from the third German edition, J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 230–231.

Woods, T. N.

T. N. Woods, G. J. Ucker, G. J. Rottman, “Solar stellar irradiance comparison experiment I: 2. Instrument calibrations,” J. Geophys. Res. 98, 10,679–10,694 (1993).
[CrossRef]

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar stellar irradiance comparison experiment I: 1. Instrument design and operation,” J. Geophys. Res. 98, 10,667–10,677 (1993).
[CrossRef]

T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
[CrossRef]

Appl. Opt.

Astron. Astrophys.

G. Basri, J. T. Clarke, B. M. Haisch, “An analysis of scattered light in low dispersion IUE spectra,” Astron. Astrophys. 144, 161–170 (1985).

Astrophys. J.

J. A. Cardelli, D. C. Ebbets, B. D. Savage, “Scattered light in the echelle modes of the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. I. Analysis of the prelaunch calibration data,” Astrophys. J. 365, 789–802 (1990).
[CrossRef]

J. Geophys. Res.

T. N. Woods, G. J. Rottman, “Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988,” J. Geophys. Res. 95, 6227–6236 (1990).
[CrossRef]

G. J. Rottman, T. N. Woods, T. P. Sparn, “Solar stellar irradiance comparison experiment I: 1. Instrument design and operation,” J. Geophys. Res. 98, 10,667–10,677 (1993).
[CrossRef]

T. N. Woods, G. J. Ucker, G. J. Rottman, “Solar stellar irradiance comparison experiment I: 2. Instrument calibrations,” J. Geophys. Res. 98, 10,679–10,694 (1993).
[CrossRef]

Opt. Acta

J. F. Verrill, “The specification and measurement of scattered light from diffraction gratings,” Opt. Acta 25, 531–547 (1978).
[CrossRef]

Other

G. I. Geikas, “Stray light from diffraction gratings,” in Stray Radiation V, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 675, 140–151 (1986).

H. von Helmholtz, Helmholtz’s Treatise on Physiological Optics, translated from the third German edition, J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), Vol. 1, pp. 230–231.

J. C. Stover, Optical Scattering Measurement and Analysis (McGraw-Hill, New York, 1990), Chap. 3, pp. 56–59; App. B, pp. 215–220.

D. Cotton, S. Chakrabarti, J. Edelstein, “EUV properties of two diffraction gratings,” in Ultraviolet Technology II, R. E. Huffman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 932, 161–168 (1988).

P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech, Norwood, Mass., 1987), Chap. 4, pp. 34–69.

J. E. Harvey, “Light scattering characteristics of optical surfaces,” in Stray Light Problems in Optical Systems, J. D. Lytle, H. E. Morrow, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 107, 41–47 (1977).

J. C. Stover, J. Rifkin, D. R. Cheever, K. H. Kirchner, T. F. Schiff, “Comparison of wavelength scaling data to experiment,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. Soc. Photo. Opt. Instrum. Eng. 967, 44–54(1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup for the unit-level measurements of grating scattered light. A green He–Ne laser (λ = 543.5 nm) is used as the light source. The light is expanded by the spatial filter (microscope objective plus aperture) and then collimated by a spherical mirror. The light is diffracted from a plane grating or reflected off a plane mirror back to the spherical mirror. Finally the light is focused back toward the exit slit and detector. The scattered-light quantity is the relative ratio of the measurement to the central image intensity as a function of the rotational angle of the plane grating or mirror. PMT, photomultiplier tube; ND, neutral density.

Fig. 2
Fig. 2

Scattered-light measurements for 10 diffraction gratings.

Fig. 3
Fig. 3

Observed and predicted GDF’s for three diffraction gratings. The solid curves are the measured GDF’s as derived from Eq. (3). The dotted curves are the GDF’s predicted from the diffraction-grating function similar to a Lorentzian function and a constant background level expressed in Eq. (6).

Fig. 4
Fig. 4

Spectrum of the scattered light from the instrument-level measurements. (a) The solar spectrum from the SOLSTICE G channel, with absorption at less than 115 nm by a MgF2 window. The diamond symbol near the tall peak in (a) is the measurement of the scattered light from Lyman-α (121.6 nm) at the Si II line (120.6 nm) as determined from a solar occultation measurement. (b) The solar spectrum from the SOLSTICE F channel with absorption at less than 165 nm by a fused-silica window. (c) The spectrum of a FEL lamp from the SOLSTICE N-channel spectrometer with absorption of less than 310 nm by a glass filter. The heavy lines, both positive and negative values, are the predicted loss and gain components of the scattered light based on a model in which the observed count rates and the inverse GDF from Eqs. (9) are used.

Fig. 5
Fig. 5

High-resolution GDF for one of the PE gratings. The peaks in the GDF are correlated with holographic images seen by the naked eye at the same viewing angle. The images appear the same in each PE grating and may be holograms of setup hardware illuminated during the recording of the holographic master.

Fig. 6
Fig. 6

Replication tree for the PE gratings. There are four levels for the replication of PE gratings. Level 0 is the master grating, level 1 is the negative submaster, and level 2 is the positive submaster. The end-product grating at level 3 is replicated from a level 2 submaster grating and is assigned a S/N based on the temporal order among other gratings produced from the same master grating.

Tables (2)

Tables Icon

Table 1 Diffraction Gratings Used in the Unit-Level, Scattered-Light Measurementsa

Tables Icon

Table 2 Parameters for the Grating Scattered-Light Measurementsa

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

X = λ - λ 0 ,
λ = d ( sin β + sin α ) ,
α = α 0 + θ ,
β = α - δ ,
α 0 = arcsin [ λ 0 2 d cos ( α 2 ) ] + δ 2 .
X = sin β + sin α ,
α = α 0 + θ ,
β = α - δ ,
α 0 = δ 2 .
Y ( θ ) = [ I m ( θ ) - I d I 0 - I d ] T 0 T ( θ ) Δ λ 0 Δ λ ( θ ) ,
Δ λ = d W f cos ( β 0 + θ ) .
I I 0 = ( sin b b ) 2 ( sin N a N sin a ) 2 ,
a = π d ( sin β - sin α ) λ 0 = π λ λ 0 ,
b = π λ - λ blaze λ 0 f .
I I 0 = [ sec α 1 + cos ( α + β ) cos α + cos β J m ( Δ ) ] 2 ( sin N a N sin a ) 2 ,
Δ = 2 π h λ ( cos α + cos β ) .
Y fit = [ sinc ( b ) sinc ( b o ) ] 2 0.5 N 2 sin 2 a + A B .
Y fit = w 2 X 2 + w 2 + A B ,
w = 1 2 π λ 0 N .
C j = C j - S j = i = 0 M C i F ( i , j ) δ λ i .
S j = F C P S j loss - S j gain F C P ,
S j loss = i = 0 λ i < λ j - Δ λ λ i > λ j + Δ λ M C i G ( i , j ) δ λ i ,             S j gain = C j G c ,
F C P = ( i = 0 M S j gain i = 0 M S j loss ) 1 / 2 ,
G ( i , j ) = [ sinc b ( i , j ) sinc b ( i , i ) ] 2 0.5 N 2 sin 2 a ( i , j ) + A B ( i ) [ π w ( i ) + A B ( i ) ( λ M - λ 0 ) ] Y C ( j ) ,
w ( i ) = λ i 2 π N ,
a ( i , j ) = π λ j λ i ,             b ( i , j ) = π λ j - λ blaze λ i f ,
A B ( i ) = ( A B ) unit ( λ unit λ i ) 4 ,
G c = 1 - Y C ( j ) Y C ( j ) ,
Y C ( j ) = i λ i λ - Δ λ λ λ + Δ λ Y N ( i , j ) δ λ i = 2 w ( j ) tan - 1 [ Δ λ w ( j ) ] + 2 Δ λ A B ( j ) π w ( j ) + A B ( j ) ( λ M - λ 0 ) .

Metrics