Abstract

We successfully obtained a high-bandwidth (1 GHz km) and low-loss (90 dB/km at 0.572 μm of wavelength) graded-index polymer optical fiber by using the interfacial-gel polymerization technique, in which we used an unreactive component to obtain the quadratic refractive-index distribution. This high-bandwidth graded-index polymer optical fiber makes it possible to transmit a high-speed optical signal in a short-range network, which is not possible when we use the step-index type of polymer optical fiber commercially available.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Emslie, “Review of polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
    [CrossRef]
  2. W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
    [CrossRef]
  3. G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
    [CrossRef]
  4. Y. Ohtsuka, Y. Koike, “Studies on the light-focusing plastic rod. 18: Control of refractive-index distribution of plastic radial gradient index by photocopolymerization,” Appl. Opt. 24, 4316–4320 (1985).
    [CrossRef] [PubMed]
  5. Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
    [CrossRef]
  6. Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
    [CrossRef]
  7. Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
    [CrossRef] [PubMed]
  8. Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
    [CrossRef]
  9. Y. Ohtsuka, Y. Koike, “Determination of the refractive-index profile of light-focusing rods: accuracy of a method using interphako interference microscopy,” Appl. Opt. 19, 2866–2872 (1980).
    [CrossRef] [PubMed]
  10. P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
    [CrossRef]
  11. Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
    [CrossRef]
  12. Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
    [CrossRef]

1992 (1)

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

1991 (1)

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

1990 (3)

Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
[CrossRef]

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

1989 (2)

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

1988 (1)

C. Emslie, “Review of polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

1986 (1)

G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
[CrossRef]

1985 (1)

1980 (1)

1957 (1)

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Anderson, H. R.

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Bair, H. E.

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Brumberger, H.

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Debye, P.

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Dieleman, A. H.

G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
[CrossRef]

Emslie, C.

C. Emslie, “Review of polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

Groh, W.

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

Khoe, G. D.

G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
[CrossRef]

Koike, Y.

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
[CrossRef]

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Ohtsuka, Y. Koike, “Studies on the light-focusing plastic rod. 18: Control of refractive-index distribution of plastic radial gradient index by photocopolymerization,” Appl. Opt. 24, 4316–4320 (1985).
[CrossRef] [PubMed]

Y. Ohtsuka, Y. Koike, “Determination of the refractive-index profile of light-focusing rods: accuracy of a method using interphako interference microscopy,” Appl. Opt. 19, 2866–2872 (1980).
[CrossRef] [PubMed]

Lupo, D.

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

Matsuoka, S.

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Nihei, E.

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

Ohtsuka, Y.

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
[CrossRef]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Ohtsuka, Y. Koike, “Studies on the light-focusing plastic rod. 18: Control of refractive-index distribution of plastic radial gradient index by photocopolymerization,” Appl. Opt. 24, 4316–4320 (1985).
[CrossRef] [PubMed]

Y. Ohtsuka, Y. Koike, “Determination of the refractive-index profile of light-focusing rods: accuracy of a method using interphako interference microscopy,” Appl. Opt. 19, 2866–2872 (1980).
[CrossRef] [PubMed]

Sixl, H.

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

Tanio, N.

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Angew. Chem. Int. Ed. Engl. Adv. Mater. (1)

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

J. Appl. Phys. (1)

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

J. Lightwave Technol. (1)

G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
[CrossRef]

J. Mater. Sci. (1)

C. Emslie, “Review of polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

Macromolecules (2)

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
[CrossRef]

Polymer (1)

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the interfacial-gel polymerization technique.

Fig. 2
Fig. 2

Refractive-index distribution of the GI preform: (A) MMA/BB = 10/1, (B) MMA/BB = 7/1, (C) MMA/BB = 5/1.

Fig. 3
Fig. 3

Distribution of copolymer composition after 100% polymerization when MMA/VB = 4/1 (wt/wt).

Fig. 4
Fig. 4

Refractive-index distribution of the MMA–BB GI preform and the GI POF: P5, preform rod (10 mm ϕ); F5, fiber (0.5 mm ϕ).

Fig. 5
Fig. 5

Total attenuation spectrum of the GI POF.

Fig. 6
Fig. 6

Experimental setup of the impulse response function measurement; LD, laser diode.

Fig. 7
Fig. 7

Output pulse spread through both GI and SI POF’s.

Fig. 8
Fig. 8

Refractive-index distribution of the MMA–BB GI POF (solid curve) in which the bandwidth is 1 GHz km and the index profile (dashed curve) is approximated by Eq. (7).

Fig. 9
Fig. 9

Normalized bandwidth of GI POF’s against index exponent g: ○, MMA–benzyl methacrylate system; ▲, MMA–VB system; ■, MMA–VPAc system; ●, MMA–BB System.

Tables (2)

Tables Icon

Table 1 Properties of the Used Monomer, Homopolymer, and Unreactive Component

Tables Icon

Table 2 Scattering Parameters of MMA-BB and MMA–VB GI POF’s at 0.633 μm

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V v iso = V v - ( 4 / 3 ) H v .
V v = ( V v 1 iso + V v 2 iso ) + ( 4 / 3 ) H v ,
α t = 1.346 × 10 6 0 π [ ( 1 + cos 2 θ ) ( V v 1 iso + V v 2 iso ) + ( 13 + cos 2 θ ) H v 3 ] sin θ d θ .
α t = α 1 iso + α 2 iso + α aniso .
η 2 ϕ 1 ϕ 2 ( n 1 - n 2 ) 2 , 4 ϕ 1 ϕ 2 n 2 ( Δ n ) ,
a = 4 V S ϕ 1 ϕ 2 ,
n ( r ) = n 0 [ 1 - ( r / R p ) g Δ ] ,
g = 2 - ( 12 / 5 ) Δ .

Metrics