Abstract

We successfully obtained a high-bandwidth (1 GHz km) and low-loss (90 dB/km at 0.572 μm of wavelength) graded-index polymer optical fiber by using the interfacial-gel polymerization technique, in which we used an unreactive component to obtain the quadratic refractive-index distribution. This high-bandwidth graded-index polymer optical fiber makes it possible to transmit a high-speed optical signal in a short-range network, which is not possible when we use the step-index type of polymer optical fiber commercially available.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Emslie, “Review of polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
    [CrossRef]
  2. W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
    [CrossRef]
  3. G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
    [CrossRef]
  4. Y. Ohtsuka, Y. Koike, “Studies on the light-focusing plastic rod. 18: Control of refractive-index distribution of plastic radial gradient index by photocopolymerization,” Appl. Opt. 24, 4316–4320 (1985).
    [CrossRef] [PubMed]
  5. Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
    [CrossRef]
  6. Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
    [CrossRef]
  7. Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
    [CrossRef] [PubMed]
  8. Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
    [CrossRef]
  9. Y. Ohtsuka, Y. Koike, “Determination of the refractive-index profile of light-focusing rods: accuracy of a method using interphako interference microscopy,” Appl. Opt. 19, 2866–2872 (1980).
    [CrossRef] [PubMed]
  10. P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
    [CrossRef]
  11. Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
    [CrossRef]
  12. Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
    [CrossRef]

1992

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

1991

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

1990

Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
[CrossRef]

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

1989

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

1988

C. Emslie, “Review of polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

1986

G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
[CrossRef]

1985

1980

1957

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Anderson, H. R.

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Bair, H. E.

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Brumberger, H.

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Debye, P.

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Dieleman, A. H.

G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
[CrossRef]

Emslie, C.

C. Emslie, “Review of polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

Groh, W.

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

Khoe, G. D.

G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
[CrossRef]

Koike, Y.

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
[CrossRef]

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Ohtsuka, Y. Koike, “Studies on the light-focusing plastic rod. 18: Control of refractive-index distribution of plastic radial gradient index by photocopolymerization,” Appl. Opt. 24, 4316–4320 (1985).
[CrossRef] [PubMed]

Y. Ohtsuka, Y. Koike, “Determination of the refractive-index profile of light-focusing rods: accuracy of a method using interphako interference microscopy,” Appl. Opt. 19, 2866–2872 (1980).
[CrossRef] [PubMed]

Lupo, D.

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

Matsuoka, S.

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Nihei, E.

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

Ohtsuka, Y.

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
[CrossRef]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Ohtsuka, Y. Koike, “Studies on the light-focusing plastic rod. 18: Control of refractive-index distribution of plastic radial gradient index by photocopolymerization,” Appl. Opt. 24, 4316–4320 (1985).
[CrossRef] [PubMed]

Y. Ohtsuka, Y. Koike, “Determination of the refractive-index profile of light-focusing rods: accuracy of a method using interphako interference microscopy,” Appl. Opt. 19, 2866–2872 (1980).
[CrossRef] [PubMed]

Sixl, H.

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

Tanio, N.

Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, “Graded-index plastic optical fiber composed of methyl methacrylate and vinyl phenylacetate copolymer,” Appl. Opt. 29, 2686–2691 (1990).
[CrossRef] [PubMed]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Angew. Chem. Int. Ed. Engl. Adv. Mater.

W. Groh, D. Lupo, H. Sixl, “Polymer optical fibers and nonlinear optical device principles,” Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 1548–1559 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Ohtsuka, E. Nihei, Y. Koike, “Graded-index optical fibers methyl methacrylate-vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120–122 (1990).
[CrossRef]

J. Appl. Phys.

P. Debye, H. R. Anderson, H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

J. Lightwave Technol.

G. D. Khoe, A. H. Dieleman, “TTOSS: Integrated subscriber system for direct and coherent detection,” J. Lightwave Technol. LT-4, 778–784 (1986).
[CrossRef]

J. Mater. Sci.

C. Emslie, “Review of polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

Macromolecules

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Koike, S. Matsuoka, H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25, 4809–4815 (1992).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

Y. Koike, Y. Ohtsuka, “Low-loss GI plastic fiber and novel optical polymers,” Mater. Res. Soc. Symp. Proc. 172, 247–252 (1990).
[CrossRef]

Polymer

Y. Koike, “High-bandwidth graded-index polymer optical fibre,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the interfacial-gel polymerization technique.

Fig. 2
Fig. 2

Refractive-index distribution of the GI preform: (A) MMA/BB = 10/1, (B) MMA/BB = 7/1, (C) MMA/BB = 5/1.

Fig. 3
Fig. 3

Distribution of copolymer composition after 100% polymerization when MMA/VB = 4/1 (wt/wt).

Fig. 4
Fig. 4

Refractive-index distribution of the MMA–BB GI preform and the GI POF: P5, preform rod (10 mm ϕ); F5, fiber (0.5 mm ϕ).

Fig. 5
Fig. 5

Total attenuation spectrum of the GI POF.

Fig. 6
Fig. 6

Experimental setup of the impulse response function measurement; LD, laser diode.

Fig. 7
Fig. 7

Output pulse spread through both GI and SI POF’s.

Fig. 8
Fig. 8

Refractive-index distribution of the MMA–BB GI POF (solid curve) in which the bandwidth is 1 GHz km and the index profile (dashed curve) is approximated by Eq. (7).

Fig. 9
Fig. 9

Normalized bandwidth of GI POF’s against index exponent g: ○, MMA–benzyl methacrylate system; ▲, MMA–VB system; ■, MMA–VPAc system; ●, MMA–BB System.

Tables (2)

Tables Icon

Table 1 Properties of the Used Monomer, Homopolymer, and Unreactive Component

Tables Icon

Table 2 Scattering Parameters of MMA-BB and MMA–VB GI POF’s at 0.633 μm

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V v iso = V v - ( 4 / 3 ) H v .
V v = ( V v 1 iso + V v 2 iso ) + ( 4 / 3 ) H v ,
α t = 1.346 × 10 6 0 π [ ( 1 + cos 2 θ ) ( V v 1 iso + V v 2 iso ) + ( 13 + cos 2 θ ) H v 3 ] sin θ d θ .
α t = α 1 iso + α 2 iso + α aniso .
η 2 ϕ 1 ϕ 2 ( n 1 - n 2 ) 2 , 4 ϕ 1 ϕ 2 n 2 ( Δ n ) ,
a = 4 V S ϕ 1 ϕ 2 ,
n ( r ) = n 0 [ 1 - ( r / R p ) g Δ ] ,
g = 2 - ( 12 / 5 ) Δ .

Metrics