Abstract

Total internal reflection microscopy has been applied to image subsurface damage sites in conventionally polished fused-silica flats. This technique can differentiate between surface and subsurface features by changing the illuminating polarization. The method is nondestructive, and no surface preparation is required other than a thorough cleaning of the surface. The intensity distributions in the illuminated region of interest are discussed. The technique has been used successfully as an optical fabrication in-process diagnostic.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Polvani, C. J. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (1990).
  2. P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal (summary),” in Optical Fabrication and Testing, Vol. 12 of OSA 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 14–22.
  3. L. Dettman, “Estimation of subsurface damage depth by dimpling,” in Science of Optical Finishing, Vol. 9 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 52–56.
  4. K. C. Hickman, R. Wingler, F. L. Williams, C. E. Sobczak, C. K. Carniglia, C. F. Kranenberg, K. Jungling, J. R. McNeil, J. P. Black, “Correlation between substrate preparation technique and scatter observed from optical coatings,” Appl. Opt. 32, 3409–3415 (1993).
    [CrossRef] [PubMed]
  5. W. E. Smith, T. H. Bui, A. Lindquist, S. D. Jacobs, “Non-destructive estimation of subsurface glass damage using fluorescent confocal microscopy,” in Optical Fabrication and Testing, Vol. 24 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 148–150.
  6. K. G. Kumanin, ed., Generation of Optical Surfaces (Focal Library, London, 1962), p. 57.
  7. P. P. Hed, Lawrence Livermore National Laboratory, Livermore, California 94551 (personal communication, 1993).
  8. G. Häiusler, G. Hohberg, “Streulichtmessungen an polierten Glasoberflächen,” Optik (Stuttgart) 30, 437–441 (1970).
  9. G. Häusler, “Lichtstreuung bei Totalreflexion an polierten Glasflächen,” Optik (Stuttgart) 34, 421–427 (1972).
  10. N. Alyassini, J. H. Parks, “Time resolved study of laser-induced structural damage in thin films,” Natl. Bur. Stand. (U.S.) Spec. Publ. 435, 284–288 (1976).
  11. P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using total internal reflection microscopy,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).
  12. F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 299–309 (1990).
  13. P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981).
    [CrossRef] [PubMed]
  14. P. A. Temple, D. Milam, W. H. Lowdermilk, “CO2-laser polishing of fused silica surface for increased laser damage resistance at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 229–236 (1980).
  15. M. Law, J. Bender, C. K. Carniglia, “Characterization of calcium fluoride optical surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 752, 532–541 (1988).
  16. F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 529.
  17. S. N. Jabr, “Total internal reflection microscopy: inspection of surfaces of high bulk scatter materials,” Appl. Opt. 24, 1689–1692 (1985).
    [CrossRef] [PubMed]

1993 (1)

1990 (2)

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 299–309 (1990).

R. S. Polvani, C. J. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (1990).

1988 (1)

M. Law, J. Bender, C. K. Carniglia, “Characterization of calcium fluoride optical surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 752, 532–541 (1988).

1985 (1)

1981 (1)

1980 (2)

P. A. Temple, D. Milam, W. H. Lowdermilk, “CO2-laser polishing of fused silica surface for increased laser damage resistance at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 229–236 (1980).

P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using total internal reflection microscopy,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).

1976 (1)

N. Alyassini, J. H. Parks, “Time resolved study of laser-induced structural damage in thin films,” Natl. Bur. Stand. (U.S.) Spec. Publ. 435, 284–288 (1976).

1972 (1)

G. Häusler, “Lichtstreuung bei Totalreflexion an polierten Glasflächen,” Optik (Stuttgart) 34, 421–427 (1972).

1970 (1)

G. Häiusler, G. Hohberg, “Streulichtmessungen an polierten Glasoberflächen,” Optik (Stuttgart) 30, 437–441 (1970).

Alyassini, N.

N. Alyassini, J. H. Parks, “Time resolved study of laser-induced structural damage in thin films,” Natl. Bur. Stand. (U.S.) Spec. Publ. 435, 284–288 (1976).

Bender, J.

M. Law, J. Bender, C. K. Carniglia, “Characterization of calcium fluoride optical surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 752, 532–541 (1988).

Black, J. P.

Bui, T. H.

W. E. Smith, T. H. Bui, A. Lindquist, S. D. Jacobs, “Non-destructive estimation of subsurface glass damage using fluorescent confocal microscopy,” in Optical Fabrication and Testing, Vol. 24 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 148–150.

Carniglia, C. K.

K. C. Hickman, R. Wingler, F. L. Williams, C. E. Sobczak, C. K. Carniglia, C. F. Kranenberg, K. Jungling, J. R. McNeil, J. P. Black, “Correlation between substrate preparation technique and scatter observed from optical coatings,” Appl. Opt. 32, 3409–3415 (1993).
[CrossRef] [PubMed]

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 299–309 (1990).

M. Law, J. Bender, C. K. Carniglia, “Characterization of calcium fluoride optical surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 752, 532–541 (1988).

Davis, J. B.

P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal (summary),” in Optical Fabrication and Testing, Vol. 12 of OSA 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 14–22.

Dettman, L.

L. Dettman, “Estimation of subsurface damage depth by dimpling,” in Science of Optical Finishing, Vol. 9 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 52–56.

Edwards, D. F.

P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal (summary),” in Optical Fabrication and Testing, Vol. 12 of OSA 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 14–22.

Evans, C. J.

R. S. Polvani, C. J. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (1990).

Häiusler, G.

G. Häiusler, G. Hohberg, “Streulichtmessungen an polierten Glasoberflächen,” Optik (Stuttgart) 30, 437–441 (1970).

Häusler, G.

G. Häusler, “Lichtstreuung bei Totalreflexion an polierten Glasflächen,” Optik (Stuttgart) 34, 421–427 (1972).

Hed, P. P.

P. P. Hed, Lawrence Livermore National Laboratory, Livermore, California 94551 (personal communication, 1993).

P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal (summary),” in Optical Fabrication and Testing, Vol. 12 of OSA 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 14–22.

Hickman, K. C.

Hohberg, G.

G. Häiusler, G. Hohberg, “Streulichtmessungen an polierten Glasoberflächen,” Optik (Stuttgart) 30, 437–441 (1970).

Jabr, S. N.

Jacobs, S. D.

W. E. Smith, T. H. Bui, A. Lindquist, S. D. Jacobs, “Non-destructive estimation of subsurface glass damage using fluorescent confocal microscopy,” in Optical Fabrication and Testing, Vol. 24 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 148–150.

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 529.

Jungling, K.

Kranenberg, C. F.

Law, M.

M. Law, J. Bender, C. K. Carniglia, “Characterization of calcium fluoride optical surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 752, 532–541 (1988).

Lindquist, A.

W. E. Smith, T. H. Bui, A. Lindquist, S. D. Jacobs, “Non-destructive estimation of subsurface glass damage using fluorescent confocal microscopy,” in Optical Fabrication and Testing, Vol. 24 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 148–150.

Lowdermilk, W. H.

P. A. Temple, D. Milam, W. H. Lowdermilk, “CO2-laser polishing of fused silica surface for increased laser damage resistance at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 229–236 (1980).

McNeil, J. R.

Milam, D.

P. A. Temple, D. Milam, W. H. Lowdermilk, “CO2-laser polishing of fused silica surface for increased laser damage resistance at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 229–236 (1980).

Parks, J. H.

N. Alyassini, J. H. Parks, “Time resolved study of laser-induced structural damage in thin films,” Natl. Bur. Stand. (U.S.) Spec. Publ. 435, 284–288 (1976).

Polvani, R. S.

R. S. Polvani, C. J. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (1990).

Pond, B. J.

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 299–309 (1990).

Smith, W. E.

W. E. Smith, T. H. Bui, A. Lindquist, S. D. Jacobs, “Non-destructive estimation of subsurface glass damage using fluorescent confocal microscopy,” in Optical Fabrication and Testing, Vol. 24 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 148–150.

Sobczak, C. E.

Temple, P. A.

P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981).
[CrossRef] [PubMed]

P. A. Temple, D. Milam, W. H. Lowdermilk, “CO2-laser polishing of fused silica surface for increased laser damage resistance at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 229–236 (1980).

P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using total internal reflection microscopy,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 529.

Williams, F. L.

Wingler, R.

Appl. Opt. (3)

Natl. Bur. Stand. (U.S.) Spec. Publ. (4)

N. Alyassini, J. H. Parks, “Time resolved study of laser-induced structural damage in thin films,” Natl. Bur. Stand. (U.S.) Spec. Publ. 435, 284–288 (1976).

P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using total internal reflection microscopy,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).

P. A. Temple, D. Milam, W. H. Lowdermilk, “CO2-laser polishing of fused silica surface for increased laser damage resistance at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 229–236 (1980).

M. Law, J. Bender, C. K. Carniglia, “Characterization of calcium fluoride optical surfaces,” Natl. Bur. Stand. (U.S.) Spec. Publ. 752, 532–541 (1988).

Natl. Inst. Stand. Technol. Spec. Publ. (2)

F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 299–309 (1990).

R. S. Polvani, C. J. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (1990).

Optik (Stuttgart) (2)

G. Häiusler, G. Hohberg, “Streulichtmessungen an polierten Glasoberflächen,” Optik (Stuttgart) 30, 437–441 (1970).

G. Häusler, “Lichtstreuung bei Totalreflexion an polierten Glasflächen,” Optik (Stuttgart) 34, 421–427 (1972).

Other (6)

P. P. Hed, D. F. Edwards, J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal (summary),” in Optical Fabrication and Testing, Vol. 12 of OSA 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 14–22.

L. Dettman, “Estimation of subsurface damage depth by dimpling,” in Science of Optical Finishing, Vol. 9 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 52–56.

W. E. Smith, T. H. Bui, A. Lindquist, S. D. Jacobs, “Non-destructive estimation of subsurface glass damage using fluorescent confocal microscopy,” in Optical Fabrication and Testing, Vol. 24 of OSA 1992 Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 148–150.

K. G. Kumanin, ed., Generation of Optical Surfaces (Focal Library, London, 1962), p. 57.

P. P. Hed, Lawrence Livermore National Laboratory, Livermore, California 94551 (personal communication, 1993).

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 529.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Relative intensity |E s /E 0|2 as a function of distance from the glass–air interface for s-polarized illumination. A standing-wave pattern exists within the glass. The glass medium has an index of refraction of n = 1.45. The critical angle is 43.6°.

Fig. 2
Fig. 2

(a) Relative intensity |E t /E 0|2 as a function of distance from the glass–air interface for the tangential component of p-polarized illumination. (b) Relative intensity |E n /E 0|2 as a function of distance from the glass–air interface for the normal component of p-polarized illumination. Note the large evanescent intensity associated with this component. A standing-wave pattern exists within the glass for both (a) and (b).

Fig. 3
Fig. 3

Relative intensities |E s /E 0|2, |E t /E 0|2 as a function of distance from the glass–air interface for s-polarized (s-pol) and the tangential component of p-polarized (p-pol) illumination. Note that the relative intensities in the glass differ by a factor of 2 and that the standing-wave patterns are nearly 180° out of phase.

Fig. 4
Fig. 4

Relative intensities |E s /E 0|2, |E t /E 0|2 as a function of distance from the glass–air interface for s-polarized (s-pol) and the tangential component of p-polarized (p-pol) illumination. Note that the relative intensities in the glass differ by a factor of 4 and differ by a factor of 2 at the interface.

Fig. 5
Fig. 5

Schematic of the TIRM apparatus. One switches from s-polarization (s-pol) to p-polarization (p-pol) by removing the half-wave plate and polarizing cube from the beam path.

Fig. 6
Fig. 6

TIRM micrographs focused on a polished fused-silica surface illuminated with (a) s polarization and (b) p polarization. Note the numerous surface features and the out-of-focus feature in the center of (a). Note the decrease in surface features and the out-of-focus feature increased intensity in (b). The angle of incidence is just beyond the critical angle and the depth of field is ~ 1.2 μm.

Fig. 7
Fig. 7

TIRM micrographs focused ~ 4.5 μm below the polished fused-silica surface illuminated with (a) s polarization and (b) p polarization. The center feature is now in focus in (a). Note the increased intensity of the focused feature of (b) when compared with that of (a). The angle of incidence is just beyond the critical angle and the depth of field is ~ 1.2 μm.

Fig. 8
Fig. 8

TIRM micrographs illuminated with s polarization showing several surface scratches on (a) a polished fused-silica sample and (b) the same sample rotated ~ 5° with respect to the vertical. The second scratch from the left in (a) is still fully visible in (b). The objective numerical aperture is 0.1. The incident beam is emanating from the left of the micrographs.

Fig. 9
Fig. 9

Schematic of the in-process diagnostic technique that uses TIRM.

Tables (1)

Tables Icon

Table 1 Comparison between the Numerical Aperture Angle ΘN.A. and the Angle when a Scratch Disappears from View Θ S for Several Objectives, Measured with Respect to the Vertical

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E s 2 E 0 2 = 2 ( 1 + cos δ s ) ,
E t 2 E 0 2 = 2 cos 2 θ ( 1 - cos δ p ) ,
E n 2 E 0 2 = 2 sin 2 θ ( 1 + cos δ p ) ,
δ s = 4 π n d λ 0 cos θ + 2 tan - 1 [ ( n 2 sin 2 θ - 1 ) 1 / 2 n cos θ ] ,
δ p = 4 π n d λ 0 cos θ + 2 tan - 1 [ n ( n 2 sin 2 θ - 1 ) 1 / 2 cos θ ] .
E v s 2 E 0 2 = E s 2 E 0 d = 0 2 exp ( - 2 α x ) ,
E v t 2 E 0 2 = E t 2 E 0 d = 0 2 exp ( - 2 α x ) ,
E v n 2 E 0 2 = E n 2 E 0 d = 0 2 n 4 exp ( - 2 α x ) ,
α = 2 π λ 0 ( n 2 sin 2 θ - 1 ) 1 / 2 .

Metrics