Abstract

A temporally resolved approach for measurement of two-dimensional temperature fields in reacting flows is experimentally investigated. The method, based on planar laser-induced fluorescence of the hydroxyl (OH) radical, is applicable in many combustion environments, including variable density flow fields. As a means of examining the accuracy of the technique, temperature images, from 1300 to 3000 K and 0.4 to 3 atm, have been acquired in shock-heated H2–O2–Ar flows with a two-laser, two-image ratio scheme. A complete measurement system for producing accurate, effectively instantaneous temperature images is described; the system includes single-shot monitors for laser-sheet energy distributions and spectral profiles. Temperature images obtained with the OH A 2Σ+X 2Π (1, 0) P1(7)–Q2(11) transition pair exhibit a systematic error of only 7% over the entire range of conditions, with the error most likely dominated by shot-to-shot fluctuations in the lasers’ spectral profiles. The largest error source in the instantaneous temperature images is photon shot noise. A group of OH transition pairs that provide good temperature sensitivity and strong signals for reduced shot-noise error over a range of flow-field conditions is also presented.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Hanson, “Combustion diagnostics: planar flow field imaging,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1987), pp. 1677–1691.
  2. J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids 3, 1193–1206 (1991).
    [CrossRef]
  3. M. L. Elder, J. D. Winefordner, “Temperature measurements in flames—a review,” Prog. Anal. Atom. Spectrosc. 6, 293–427 (1983).
  4. T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 71–74 (1990).
    [CrossRef]
  5. B. Yip, P. M. Danehy, R. K. Hanson, “Degenerate four-wave mixing temperature measurements in a flame,” Opt. Lett. 17, 751–753 (1992).
    [CrossRef] [PubMed]
  6. N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci., 14, 147–170 (1988).
    [CrossRef]
  7. R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
    [CrossRef]
  8. P. Ewart, M. Kaczmarek, “Two-dimensional mapping of temperature in a flame by degenerate four-wave mixing,” Appl. Opt. 30, 3996–3999 (1991).
    [CrossRef] [PubMed]
  9. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  10. M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.
  11. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence,” Opt. Lett. 12, 75–77 (1987).
    [CrossRef] [PubMed]
  12. B. K. McMillin, J. L. Palmer, A. L. Antonio, R. K. Hanson, “Instantaneous, two-line temperature imaging of a H2/NO jet in supersonic crossflow,” presented at the AIAA/SAE/ASME/ASEE Twenty-Eighth Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992.
  13. M. Allen, S. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distribution in reacting flows: a novel approach to ground testing instrumentation,” presented at the AIAA/SAE/ASME/ASEE Twenty-sixth Joint Propulsion Conference, Orlando, Fla., 16–18 July 1990.
  14. P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.
  15. J. M. Seitzman, R. K. Hanson, “A comparison of excitation techniques for quantitative fluorescence imaging of reaction flows,” AIAA J. 31, 513–519 (1993).
    [CrossRef]
  16. J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
    [CrossRef]
  17. R. Cattolica, “OH rotational temperature from two-line excited fluorescence,” Appl. Opt. 20, 1156–1162 (1981).
    [CrossRef] [PubMed]
  18. I. L. Chidsley, D. R. Crosley, “Calculated rotational transition probabilities for the A−X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–189 (1980).
    [CrossRef]
  19. J. B. Jeffries, K. Kohse-Hoinghaus, G. P. Smith, R. A. Cope-land, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
    [CrossRef]
  20. R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1984).
  21. D. A. Masten, R. K. Hanson, C. T. Bowman, “Shock tube study of the reaction H + O2 → OH + O using laser absorption,” J. Phys. Chem. 94, 7119–7128 (1990); R. J. Kee, F. M. Rupley, J. A. Miller “Chemkin-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia Rep. SAND89-8009 (Sandia National Laboratory, Livermore, Calif., 1989); R. J. Kee, F. M. Rupley, J. A. Miller, “The chemkin thermodynamic data base,” Sandia Rep. SAND87-8215B (Sandia National Laboratory, Livermore, Calif., 1990).
    [CrossRef]
  22. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), Chap. 4, p. 116.
  23. B. K. McMillin, “Instantaneous two-line PLIF temperature imaging of nitric oxide in supersonic mixing and combustion flow fields,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).
  24. B. R. Sandel, A. L. Broadfoot, “Statistical performance of the intensified charge coupled device,” Appl. Opt. 25, 4135–4140 (1986).
    [CrossRef] [PubMed]
  25. A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
    [CrossRef]
  26. B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exper. Fluids (to be published).
  27. M. Miller, T. Island, B. Yip, C. T. Bowman, M. Mungal, R. K. Hanson, “An experimental study of the structure of a compressible, reacting mixing layer,” presented at the Thirty-First Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 11–14 January 1993.
  28. R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ(υ′ = 1) by collisons with H2O in low pressure flames,” Chem. Phys. Lett. 182, 623–631 (1991).
    [CrossRef]

1993 (2)

J. M. Seitzman, R. K. Hanson, “A comparison of excitation techniques for quantitative fluorescence imaging of reaction flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
[CrossRef]

1992 (2)

B. Yip, P. M. Danehy, R. K. Hanson, “Degenerate four-wave mixing temperature measurements in a flame,” Opt. Lett. 17, 751–753 (1992).
[CrossRef] [PubMed]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

1991 (3)

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ(υ′ = 1) by collisons with H2O in low pressure flames,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids 3, 1193–1206 (1991).
[CrossRef]

P. Ewart, M. Kaczmarek, “Two-dimensional mapping of temperature in a flame by degenerate four-wave mixing,” Appl. Opt. 30, 3996–3999 (1991).
[CrossRef] [PubMed]

1990 (3)

T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 71–74 (1990).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

D. A. Masten, R. K. Hanson, C. T. Bowman, “Shock tube study of the reaction H + O2 → OH + O using laser absorption,” J. Phys. Chem. 94, 7119–7128 (1990); R. J. Kee, F. M. Rupley, J. A. Miller “Chemkin-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia Rep. SAND89-8009 (Sandia National Laboratory, Livermore, Calif., 1989); R. J. Kee, F. M. Rupley, J. A. Miller, “The chemkin thermodynamic data base,” Sandia Rep. SAND87-8215B (Sandia National Laboratory, Livermore, Calif., 1990).
[CrossRef]

1988 (2)

J. B. Jeffries, K. Kohse-Hoinghaus, G. P. Smith, R. A. Cope-land, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci., 14, 147–170 (1988).
[CrossRef]

1987 (1)

1986 (1)

1985 (1)

1984 (1)

R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1984).

1983 (1)

M. L. Elder, J. D. Winefordner, “Temperature measurements in flames—a review,” Prog. Anal. Atom. Spectrosc. 6, 293–427 (1983).

1981 (1)

1980 (1)

I. L. Chidsley, D. R. Crosley, “Calculated rotational transition probabilities for the A−X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–189 (1980).
[CrossRef]

Allen, M.

M. Allen, S. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distribution in reacting flows: a novel approach to ground testing instrumentation,” presented at the AIAA/SAE/ASME/ASEE Twenty-sixth Joint Propulsion Conference, Orlando, Fla., 16–18 July 1990.

Allen, M. G.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.

Antonio, A. L.

B. K. McMillin, J. L. Palmer, A. L. Antonio, R. K. Hanson, “Instantaneous, two-line temperature imaging of a H2/NO jet in supersonic crossflow,” presented at the AIAA/SAE/ASME/ASEE Twenty-Eighth Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992.

Bowman, C. T.

D. A. Masten, R. K. Hanson, C. T. Bowman, “Shock tube study of the reaction H + O2 → OH + O using laser absorption,” J. Phys. Chem. 94, 7119–7128 (1990); R. J. Kee, F. M. Rupley, J. A. Miller “Chemkin-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia Rep. SAND89-8009 (Sandia National Laboratory, Livermore, Calif., 1989); R. J. Kee, F. M. Rupley, J. A. Miller, “The chemkin thermodynamic data base,” Sandia Rep. SAND87-8215B (Sandia National Laboratory, Livermore, Calif., 1990).
[CrossRef]

M. Miller, T. Island, B. Yip, C. T. Bowman, M. Mungal, R. K. Hanson, “An experimental study of the structure of a compressible, reacting mixing layer,” presented at the Thirty-First Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 11–14 January 1993.

Broadfoot, A. L.

Broadwell, J. E.

J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids 3, 1193–1206 (1991).
[CrossRef]

Cattolica, R.

Cattolica, R. J.

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ(υ′ = 1) by collisons with H2O in low pressure flames,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1984).

Chidsley, I. L.

I. L. Chidsley, D. R. Crosley, “Calculated rotational transition probabilities for the A−X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–189 (1980).
[CrossRef]

Cope-land, R. A.

J. B. Jeffries, K. Kohse-Hoinghaus, G. P. Smith, R. A. Cope-land, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

Crosley, D. R.

J. B. Jeffries, K. Kohse-Hoinghaus, G. P. Smith, R. A. Cope-land, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

I. L. Chidsley, D. R. Crosley, “Calculated rotational transition probabilities for the A−X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–189 (1980).
[CrossRef]

Danehy, P. M.

Davis, S.

M. Allen, S. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distribution in reacting flows: a novel approach to ground testing instrumentation,” presented at the AIAA/SAE/ASME/ASEE Twenty-sixth Joint Propulsion Conference, Orlando, Fla., 16–18 July 1990.

Davis, S. J.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), Chap. 4, p. 116.

Donohue, K.

M. Allen, S. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distribution in reacting flows: a novel approach to ground testing instrumentation,” presented at the AIAA/SAE/ASME/ASEE Twenty-sixth Joint Propulsion Conference, Orlando, Fla., 16–18 July 1990.

Dreier, T.

T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 71–74 (1990).
[CrossRef]

Elder, M. L.

M. L. Elder, J. D. Winefordner, “Temperature measurements in flames—a review,” Prog. Anal. Atom. Spectrosc. 6, 293–427 (1983).

Ewart, P.

Foutter, R. R.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.

Hanson, R. K.

J. M. Seitzman, R. K. Hanson, “A comparison of excitation techniques for quantitative fluorescence imaging of reaction flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

B. Yip, P. M. Danehy, R. K. Hanson, “Degenerate four-wave mixing temperature measurements in a flame,” Opt. Lett. 17, 751–753 (1992).
[CrossRef] [PubMed]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

D. A. Masten, R. K. Hanson, C. T. Bowman, “Shock tube study of the reaction H + O2 → OH + O using laser absorption,” J. Phys. Chem. 94, 7119–7128 (1990); R. J. Kee, F. M. Rupley, J. A. Miller “Chemkin-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia Rep. SAND89-8009 (Sandia National Laboratory, Livermore, Calif., 1989); R. J. Kee, F. M. Rupley, J. A. Miller, “The chemkin thermodynamic data base,” Sandia Rep. SAND87-8215B (Sandia National Laboratory, Livermore, Calif., 1990).
[CrossRef]

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

R. K. Hanson, “Combustion diagnostics: planar flow field imaging,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1987), pp. 1677–1691.

B. K. McMillin, J. L. Palmer, A. L. Antonio, R. K. Hanson, “Instantaneous, two-line temperature imaging of a H2/NO jet in supersonic crossflow,” presented at the AIAA/SAE/ASME/ASEE Twenty-Eighth Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992.

M. Miller, T. Island, B. Yip, C. T. Bowman, M. Mungal, R. K. Hanson, “An experimental study of the structure of a compressible, reacting mixing layer,” presented at the Thirty-First Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 11–14 January 1993.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exper. Fluids (to be published).

P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

Island, T.

M. Miller, T. Island, B. Yip, C. T. Bowman, M. Mungal, R. K. Hanson, “An experimental study of the structure of a compressible, reacting mixing layer,” presented at the Thirty-First Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 11–14 January 1993.

Jeffries, J. B.

J. B. Jeffries, K. Kohse-Hoinghaus, G. P. Smith, R. A. Cope-land, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

Kaczmarek, M.

Kohse-Hoinghaus, K.

J. B. Jeffries, K. Kohse-Hoinghaus, G. P. Smith, R. A. Cope-land, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

Kychakoff, G.

Laurendeau, N. M.

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci., 14, 147–170 (1988).
[CrossRef]

Lee, M. P.

Legner, H. H.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.

Lozano, A.

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exper. Fluids (to be published).

Masten, D. A.

D. A. Masten, R. K. Hanson, C. T. Bowman, “Shock tube study of the reaction H + O2 → OH + O using laser absorption,” J. Phys. Chem. 94, 7119–7128 (1990); R. J. Kee, F. M. Rupley, J. A. Miller “Chemkin-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia Rep. SAND89-8009 (Sandia National Laboratory, Livermore, Calif., 1989); R. J. Kee, F. M. Rupley, J. A. Miller, “The chemkin thermodynamic data base,” Sandia Rep. SAND87-8215B (Sandia National Laboratory, Livermore, Calif., 1990).
[CrossRef]

Mataga, T. G.

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ(υ′ = 1) by collisons with H2O in low pressure flames,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

McMillin, B. K.

B. K. McMillin, “Instantaneous two-line PLIF temperature imaging of nitric oxide in supersonic mixing and combustion flow fields,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).

B. K. McMillin, J. L. Palmer, A. L. Antonio, R. K. Hanson, “Instantaneous, two-line temperature imaging of a H2/NO jet in supersonic crossflow,” presented at the AIAA/SAE/ASME/ASEE Twenty-Eighth Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992.

Meier, U. E.

P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

Miller, M.

M. Miller, T. Island, B. Yip, C. T. Bowman, M. Mungal, R. K. Hanson, “An experimental study of the structure of a compressible, reacting mixing layer,” presented at the Thirty-First Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 11–14 January 1993.

Miller, M. F.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exper. Fluids (to be published).

Mungal, M.

M. Miller, T. Island, B. Yip, C. T. Bowman, M. Mungal, R. K. Hanson, “An experimental study of the structure of a compressible, reacting mixing layer,” presented at the Thirty-First Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 11–14 January 1993.

Mungal, M. G.

J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids 3, 1193–1206 (1991).
[CrossRef]

Palmer, J. L.

B. K. McMillin, J. L. Palmer, A. L. Antonio, R. K. Hanson, “Instantaneous, two-line temperature imaging of a H2/NO jet in supersonic crossflow,” presented at the AIAA/SAE/ASME/ASEE Twenty-Eighth Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992.

Parker, T. E.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.

Paul, P. H.

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

Rakestraw, D. J.

T. Dreier, D. J. Rakestraw, “Measurement of OH rotational temperatures in a flame using degenerate four-wave mixing,” Opt. Lett. 15, 71–74 (1990).
[CrossRef]

Rawlins, W. T.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.

Reinecke, W. G.

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.

Sandel, B. R.

Seitzman, J. M.

J. M. Seitzman, R. K. Hanson, “A comparison of excitation techniques for quantitative fluorescence imaging of reaction flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

Smith, G. P.

J. B. Jeffries, K. Kohse-Hoinghaus, G. P. Smith, R. A. Cope-land, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

Stephenson, D. A.

R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1984).

Winefordner, J. D.

M. L. Elder, J. D. Winefordner, “Temperature measurements in flames—a review,” Prog. Anal. Atom. Spectrosc. 6, 293–427 (1983).

Yip, B.

B. Yip, P. M. Danehy, R. K. Hanson, “Degenerate four-wave mixing temperature measurements in a flame,” Opt. Lett. 17, 751–753 (1992).
[CrossRef] [PubMed]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exper. Fluids (to be published).

M. Miller, T. Island, B. Yip, C. T. Bowman, M. Mungal, R. K. Hanson, “An experimental study of the structure of a compressible, reacting mixing layer,” presented at the Thirty-First Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 11–14 January 1993.

AIAA J. (1)

J. M. Seitzman, R. K. Hanson, “A comparison of excitation techniques for quantitative fluorescence imaging of reaction flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (2)

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Two-line planar fluorescence for temporally resolved temperature imaging in reacting supersonic flow over a body,” Appl. Phys. B 57, 385–391 (1993).
[CrossRef]

Chem. Phys. Lett. (2)

J. B. Jeffries, K. Kohse-Hoinghaus, G. P. Smith, R. A. Cope-land, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ(υ′ = 1) by collisons with H2O in low pressure flames,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

Exp. Fluids (1)

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

J. Phys. Chem. (1)

D. A. Masten, R. K. Hanson, C. T. Bowman, “Shock tube study of the reaction H + O2 → OH + O using laser absorption,” J. Phys. Chem. 94, 7119–7128 (1990); R. J. Kee, F. M. Rupley, J. A. Miller “Chemkin-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics,” Sandia Rep. SAND89-8009 (Sandia National Laboratory, Livermore, Calif., 1989); R. J. Kee, F. M. Rupley, J. A. Miller, “The chemkin thermodynamic data base,” Sandia Rep. SAND87-8215B (Sandia National Laboratory, Livermore, Calif., 1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

I. L. Chidsley, D. R. Crosley, “Calculated rotational transition probabilities for the A−X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–189 (1980).
[CrossRef]

Opt. Lett. (4)

Phys. Fluids (1)

J. E. Broadwell, M. G. Mungal, “Large-scale structures and molecular mixing,” Phys. Fluids 3, 1193–1206 (1991).
[CrossRef]

Prog. Anal. Atom. Spectrosc. (1)

M. L. Elder, J. D. Winefordner, “Temperature measurements in flames—a review,” Prog. Anal. Atom. Spectrosc. 6, 293–427 (1983).

Prog. Astronaut. Aeronaut. (1)

R. J. Cattolica, D. A. Stephenson, “Two-dimensional imaging of flame temperature using laser-induced fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1984).

Prog. Energy Combust. Sci. (1)

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci., 14, 147–170 (1988).
[CrossRef]

Other (9)

M. G. Allen, T. E. Parker, W. G. Reinecke, H. H. Legner, R. R. Foutter, W. T. Rawlins, S. J. Davis, “Instantaneous temperature and concentration imaging in supersonic air flow behind a rear-facing step with hydrogen injection,” presented at the Thirtieth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 6–9 January 1992.

R. K. Hanson, “Combustion diagnostics: planar flow field imaging,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1987), pp. 1677–1691.

B. K. McMillin, J. L. Palmer, A. L. Antonio, R. K. Hanson, “Instantaneous, two-line temperature imaging of a H2/NO jet in supersonic crossflow,” presented at the AIAA/SAE/ASME/ASEE Twenty-Eighth Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992.

M. Allen, S. Davis, K. Donohue, “Planar measurements of instantaneous species and temperature distribution in reacting flows: a novel approach to ground testing instrumentation,” presented at the AIAA/SAE/ASME/ASEE Twenty-sixth Joint Propulsion Conference, Orlando, Fla., 16–18 July 1990.

P. H. Paul, U. E. Meier, R. K. Hanson, “Single-shot, multiple-camera planar laser-induced fluorescence imaging in gaseous flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), Chap. 4, p. 116.

B. K. McMillin, “Instantaneous two-line PLIF temperature imaging of nitric oxide in supersonic mixing and combustion flow fields,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1993).

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exper. Fluids (to be published).

M. Miller, T. Island, B. Yip, C. T. Bowman, M. Mungal, R. K. Hanson, “An experimental study of the structure of a compressible, reacting mixing layer,” presented at the Thirty-First Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 11–14 January 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangement used to acquire instantaneous temperature images of OH in shock-heated hydrogen–air mixtures. SHG, second-harmonic generation; ICCD, intensified charge-coupled device; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Schematic of single-shot laser monitors for instantaneous, two-laser temperature imaging.

Fig. 3
Fig. 3

Linearity of Rhodamine dye cell fluorescence, recorded on a video CCD (VCCD) camera, and acetone fluorescence, recorded on an ICCD camera, as a function of laser energy up to a maximum of ~0.75 mJ. The reported fluorescence signals are the average of the same 50 laser shots, accumulated by each camera system.

Fig. 4
Fig. 4

Comparison of the time-averaged transverse energy profile of the laser sheet, recorded with fluorescence from the Rhodamine dye cell–VCCD camera system and the acetone–ICCD camera system.

Fig. 5
Fig. 5

Comparison of a transverse cut through a raw Q2(11) fluorescence image (2000 ppm of OH at 2400 K and 0.64 atm) and the image corrected according to Eq. (6). The OH ignition front travels left to right. The combined sheet and uniform response profile used to correct the data is also shown. All profiles are single rows from (binned) 192 × 289 pixel images.

Fig. 6
Fig. 6

Shot-to-shot variations in the laser-sheet profile for six laser shots, each normalized by its intensity at the left edge of the sheet.

Fig. 7
Fig. 7

(Top) OH fluorescence image and (bottom) corresponding temperature image acquired with the Q2(11)–P1(7) line pair at 0.4 atm and 2176 K. The reaction zone appears at the right side of the image, with the shock (traveling left to right) already outside the imaged region. The brightest OH fluorescence and the highest temperatures are white in this linear, gray scale encoding.

Fig. 8
Fig. 8

Comparison of expected OH and temperature profiles at the 0.4-atm conditions with a transverse cut through a ten-row average of the image pair from Fig. 7, showing (top) single-shot fluorescence images and (bottom) the resulting temperature image. Each point represents an average over ten rows from a (binned) 192 × 289 pixel image.

Fig. 9
Fig. 9

Measured dependence of the fluorescence ratio on temperature for three OH transition pairs acquired at 0.7 atm. The lines are linear least-squares fits with fixed slopes equal to the calculated ground-state energy spacing (Δɛ12/k).

Fig. 10
Fig. 10

Fractional error (TmeasTexpect)/Texpect hi instantaneous temperature measurements derived from spatially averaged single-shot OH fluorescence ratios of the Q2(11)–P1(7) line pair at three pressures. The standard deviation of the entire data set is 7.4%.

Fig. 11
Fig. 11

Étalon (~0.1-cm−1 resolution) measurements of the laser-spectral profile for the shots corresponding to the three P1(7) fluorescence images at the 0.4-atm, ~1500-K conditions shown in Fig. 10; for comparison, a 50-shot-average profile is also shown.

Tables (3)

Tables Icon

Table 1 Isolated OH A 2Σ+X 2Π (1, 0) Band Transitions Suitable for Planar Thermometry with Rotational Quantum Numbers N between 5 and 12a

Tables Icon

Table 2 Energy (Δɛ12/k, in kelvins) Spacings for Selected OH Transition Pairs

Tables Icon

Table 3 Nominal Conditions for the Shock-Heated H2–O2–Ar Flows during the PLIF Temperature Measurementa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N pe = η V c n a f ( T ) B E g ( ν L , ν a ) A A + Q ,
g ( ν L , ν a ) = g L ( ν , ν L ) g a ( ν , ν a ) d ν ,
R = ( η B E ) 1 ( η B E ) 2 g 1 g 2 f 1 f 2 ϕ 1 ϕ 2 .
R = C E 1 E 2 exp ( Δ ε 12 / k T ) ,
| d R R | = | Δ ε 12 | k T | d T T | ,
Corrected Image = I i I B i ( S i S B i ) U i ,

Metrics