Abstract

We describe a Q-switched alexandrite laser injection seeded with a cw single-mode titanium–sapphire laser. The reported experimental results show that this system meets the frequency stabilization required for differential absorption lidar measurement of humidity, pressure, and temperature. The emission of the cw titanium–sapphire master oscillator is locked to an atmospheric absorption line by means of a servoloop with derivative spectroscopy. The spectral position is stabilized within ±3.5 × 10−4 cm−1 (10 MHz) of the peak of the line over 1 hr. The alexandrite laser emits pulses of 30 mJ in 500 ns, with a spectral linewidth of ≈3.3 × 10−3 cm−1 (100 MHz). The position of the centroid of the emitted spectrum has a standard deviation of 6 × 10−4 cm−1 (18 MHz) and is held within ±1.3 × 10−3 cm−1 (40 MHz) of the peak of the absorption line over 1 h.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiât. Transfer 25, 151–157 (1981).
    [CrossRef]
  2. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
    [CrossRef] [PubMed]
  3. G. Mégie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980).
    [CrossRef] [PubMed]
  4. C. L. Korb, C. Y. Weng, “Differential absorption lidar technique for the measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983).
    [CrossRef] [PubMed]
  5. C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
    [CrossRef]
  6. F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experimentation,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
    [CrossRef]
  7. J. C. Walling, “Tunable parametric-ions solid state lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, New York, 1987), pp. 331–398.
  8. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
    [CrossRef]
  9. P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Optimization of the Alexandrite laser tuning elements for a water vapor LIDAR,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 178–182 (1990).
  10. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
    [CrossRef] [PubMed]
  11. C. R. Prasad, G. K. Schwemmer, C. K. Korb, “Wavemeter measurements of frequency stability of an injection seeded alexandrite laser for pressure and temperature lidar,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 517–520.
  12. P. Y. Thro, J. Bösenberg, V. Wulfmeyer, “An alexandrite regenerative amplifier for water vapor and temperature measurements,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 513–516.
  13. P. A. Shulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
    [CrossRef]
  14. G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt.1173–1182 (1980).
    [CrossRef] [PubMed]
  15. B. E. Grossman, E. V. Browell, “Spectroscopy of the water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
    [CrossRef]
  16. D. E. Burch, D. A. Gryvnak, “Strengths, widths, and shapes of the oxygen lines near 13,100 cm−1 (7620 Å),” Appl. Opt. 8, 1493–1499 (1969).
    [CrossRef] [PubMed]
  17. O. Blanchard, “Conception et développement d’un mesureur de longueurs d’onde haute résolution pour des expériences lidar embarquées sur avion,” Ph.D. dissertation (Université Paris VI, Paris, France, 1990).
  18. K. Choi, S. H. Lin, E. Korevaar, C. S. Liu, “A Q-switch alexandrite laser injection seeded by a rubidium absorption frequency matched diode laser,” Opt. Commun. 88, 385–390 (1992).
    [CrossRef]
  19. P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988).
    [CrossRef]
  20. F. Estable, “Amplification régénérative et multipassage d’impulsions lumineuses dans les milieux solides (YAG dopé néodyme, alexandrite, saphir dopé titane),” Ph.D. dissertation (Université Paris XI, Orsay, France, 1992).
  21. A. V. Nowak, B. J. Krohn, “Spectral characterization of a tunable alexandrite laser by rubidium absorption at 780 nm,” IEEE J. Quantum Electron. QE-21, 1607–1613 (1985).
    [CrossRef]
  22. J. Harrison, A. Finch, D. M. Rines, G. A. Rines, P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al2O3 laser,” Opt. Lett. 16, 581–583 (1991).
    [CrossRef] [PubMed]

1993 (1)

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experimentation,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
[CrossRef]

1992 (1)

K. Choi, S. H. Lin, E. Korevaar, C. S. Liu, “A Q-switch alexandrite laser injection seeded by a rubidium absorption frequency matched diode laser,” Opt. Commun. 88, 385–390 (1992).
[CrossRef]

1991 (2)

1989 (2)

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

B. E. Grossman, E. V. Browell, “Spectroscopy of the water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

1988 (2)

P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988).
[CrossRef]

P. A. Shulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

1987 (1)

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

1985 (1)

A. V. Nowak, B. J. Krohn, “Spectral characterization of a tunable alexandrite laser by rubidium absorption at 780 nm,” IEEE J. Quantum Electron. QE-21, 1607–1613 (1985).
[CrossRef]

1983 (1)

1982 (1)

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

1981 (1)

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiât. Transfer 25, 151–157 (1981).
[CrossRef]

1980 (2)

G. Mégie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980).
[CrossRef] [PubMed]

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt.1173–1182 (1980).
[CrossRef] [PubMed]

1969 (1)

Bado, P.

P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988).
[CrossRef]

Blanchard, O.

O. Blanchard, “Conception et développement d’un mesureur de longueurs d’onde haute résolution pour des expériences lidar embarquées sur avion,” Ph.D. dissertation (Université Paris VI, Paris, France, 1990).

Bösenberg, J.

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experimentation,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
[CrossRef]

P. Y. Thro, J. Bösenberg, V. Wulfmeyer, “An alexandrite regenerative amplifier for water vapor and temperature measurements,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 513–516.

Browell, E. V.

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

B. E. Grossman, E. V. Browell, “Spectroscopy of the water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Optimization of the Alexandrite laser tuning elements for a water vapor LIDAR,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 178–182 (1990).

Bruneau, D.

Burch, D. E.

Cahen, C.

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiât. Transfer 25, 151–157 (1981).
[CrossRef]

Cazeneuve, H.

Choi, K.

K. Choi, S. H. Lin, E. Korevaar, C. S. Liu, “A Q-switch alexandrite laser injection seeded by a rubidium absorption frequency matched diode laser,” Opt. Commun. 88, 385–390 (1992).
[CrossRef]

Dombrowski, M.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Estable, F.

F. Estable, “Amplification régénérative et multipassage d’impulsions lumineuses dans les milieux solides (YAG dopé néodyme, alexandrite, saphir dopé titane),” Ph.D. dissertation (Université Paris XI, Orsay, France, 1992).

Finch, A.

Grossman, B. E.

B. E. Grossman, E. V. Browell, “Spectroscopy of the water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

Grossmann, B. E.

P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Optimization of the Alexandrite laser tuning elements for a water vapor LIDAR,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 178–182 (1990).

Gryvnak, D. A.

Harrison, J.

Harter, D. J.

P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988).
[CrossRef]

Higdon, N. S.

P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Optimization of the Alexandrite laser tuning elements for a water vapor LIDAR,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 178–182 (1990).

Ismail, S.

Kagann, R. H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Korb, C. K.

C. R. Prasad, G. K. Schwemmer, C. K. Korb, “Wavemeter measurements of frequency stability of an injection seeded alexandrite laser for pressure and temperature lidar,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 517–520.

Korb, C. L.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

C. L. Korb, C. Y. Weng, “Differential absorption lidar technique for the measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983).
[CrossRef] [PubMed]

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Korevaar, E.

K. Choi, S. H. Lin, E. Korevaar, C. S. Liu, “A Q-switch alexandrite laser injection seeded by a rubidium absorption frequency matched diode laser,” Opt. Commun. 88, 385–390 (1992).
[CrossRef]

Krohn, B. J.

A. V. Nowak, B. J. Krohn, “Spectral characterization of a tunable alexandrite laser by rubidium absorption at 780 nm,” IEEE J. Quantum Electron. QE-21, 1607–1613 (1985).
[CrossRef]

Lin, S. H.

K. Choi, S. H. Lin, E. Korevaar, C. S. Liu, “A Q-switch alexandrite laser injection seeded by a rubidium absorption frequency matched diode laser,” Opt. Commun. 88, 385–390 (1992).
[CrossRef]

Liu, C. S.

K. Choi, S. H. Lin, E. Korevaar, C. S. Liu, “A Q-switch alexandrite laser injection seeded by a rubidium absorption frequency matched diode laser,” Opt. Commun. 88, 385–390 (1992).
[CrossRef]

Loth, C.

Mégie, G.

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiât. Transfer 25, 151–157 (1981).
[CrossRef]

G. Mégie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980).
[CrossRef] [PubMed]

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt.1173–1182 (1980).
[CrossRef] [PubMed]

Menzies, R. T.

G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt.1173–1182 (1980).
[CrossRef] [PubMed]

Milrod, J.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Moulton, P. F.

Mourou, G.

P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988).
[CrossRef]

Nowak, A. V.

A. V. Nowak, B. J. Krohn, “Spectral characterization of a tunable alexandrite laser by rubidium absorption at 780 nm,” IEEE J. Quantum Electron. QE-21, 1607–1613 (1985).
[CrossRef]

Pelon, J.

Pessot, M.

P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988).
[CrossRef]

Ponsardin, P.

P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Optimization of the Alexandrite laser tuning elements for a water vapor LIDAR,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 178–182 (1990).

Prasad, C. R.

C. R. Prasad, G. K. Schwemmer, C. K. Korb, “Wavemeter measurements of frequency stability of an injection seeded alexandrite laser for pressure and temperature lidar,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 517–520.

Rines, D. M.

Rines, G. A.

Schwemmer, G. K.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

C. R. Prasad, G. K. Schwemmer, C. K. Korb, “Wavemeter measurements of frequency stability of an injection seeded alexandrite laser for pressure and temperature lidar,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 517–520.

Shulz, P. A.

P. A. Shulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

Squier, J.

P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988).
[CrossRef]

Theopold, F. A.

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experimentation,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
[CrossRef]

Thro, P. Y.

P. Y. Thro, J. Bösenberg, V. Wulfmeyer, “An alexandrite regenerative amplifier for water vapor and temperature measurements,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 513–516.

Walden, H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Walling, J. C.

J. C. Walling, “Tunable parametric-ions solid state lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, New York, 1987), pp. 331–398.

Weng, C. Y.

C. L. Korb, C. Y. Weng, “Differential absorption lidar technique for the measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983).
[CrossRef] [PubMed]

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Wulfmeyer, V.

P. Y. Thro, J. Bösenberg, V. Wulfmeyer, “An alexandrite regenerative amplifier for water vapor and temperature measurements,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 513–516.

Appl. Opt. (6)

IEEE J. Quantum Electron. (3)

P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988).
[CrossRef]

P. A. Shulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

A. V. Nowak, B. J. Krohn, “Spectral characterization of a tunable alexandrite laser by rubidium absorption at 780 nm,” IEEE J. Quantum Electron. QE-21, 1607–1613 (1985).
[CrossRef]

J. Appl. Meteorol. (1)

C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experimentation,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
[CrossRef]

J. Mol. Spectrosc. (1)

B. E. Grossman, E. V. Browell, “Spectroscopy of the water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiât. Transfer (1)

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiât. Transfer 25, 151–157 (1981).
[CrossRef]

Opt. Commun. (1)

K. Choi, S. H. Lin, E. Korevaar, C. S. Liu, “A Q-switch alexandrite laser injection seeded by a rubidium absorption frequency matched diode laser,” Opt. Commun. 88, 385–390 (1992).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Other (6)

P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Optimization of the Alexandrite laser tuning elements for a water vapor LIDAR,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 178–182 (1990).

C. R. Prasad, G. K. Schwemmer, C. K. Korb, “Wavemeter measurements of frequency stability of an injection seeded alexandrite laser for pressure and temperature lidar,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 517–520.

P. Y. Thro, J. Bösenberg, V. Wulfmeyer, “An alexandrite regenerative amplifier for water vapor and temperature measurements,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 513–516.

J. C. Walling, “Tunable parametric-ions solid state lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, New York, 1987), pp. 331–398.

F. Estable, “Amplification régénérative et multipassage d’impulsions lumineuses dans les milieux solides (YAG dopé néodyme, alexandrite, saphir dopé titane),” Ph.D. dissertation (Université Paris XI, Orsay, France, 1992).

O. Blanchard, “Conception et développement d’un mesureur de longueurs d’onde haute résolution pour des expériences lidar embarquées sur avion,” Ph.D. dissertation (Université Paris VI, Paris, France, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical arrangement of the titanium–sapphire master oscillator. TS, titanium–sapphire rod; FL, focusing lens; PRM, pump reflection mirror; CM, concave mirror; FM, flat mirror; PZT, piezo-translator; OC, output coupler; OD, optical diode; LF, Lyot filter; FP, Fabry–Perot étalon.

Fig. 2
Fig. 2

Variation of n(d2σ/dν2) as a function of pressure (a) for the 13 718.6-cm−1 water-vapor line and (b) for the 13 146.6-cm−1 oxygen line.

Fig. 3
Fig. 3

Experimental setup for the spectral locking of the TSMO.

Fig. 4
Fig. 4

Spectral position of the unlocked TSMO emission as a function of time.

Fig. 5
Fig. 5

Short-term recording of the spectral position of the locked TSMO emission relative to the absorption-line center.

Fig. 6
Fig. 6

Long-term recording of the spectral position of the locked TSMO emission relative to the absorption-line center.

Fig. 7
Fig. 7

PAO arrangement

Fig. 8
Fig. 8

Calculated intensities of the injected pulses for different slicing ratios x = t P /t R ; the unit is the pulse’s round-trip time in the cavity, t R .

Fig. 9
Fig. 9

Calculated spectral envelope of the PAO modes for different slicing ratios x = t P /t R ; the frequency unit is the FSR of the cavity, ν R .

Fig. 10
Fig. 10

Calculated injection efficiency versus mode mismatch, (mν R ν0)/ν R , for different slicing ratios x = t P /t R .

Fig. 11
Fig. 11

Experimental setup for the spectral locking of the TSMO and the injection seeding of the PAO.

Fig. 12
Fig. 12

Single-shot ring pattern found with the Fabry–Perot interferometer (FSR-3.3 × 10−2 cm−1) and the intensity profile along the horizontal line.

Fig. 13
Fig. 13

Short-term recording of the spectral position of the PAO emission relative to the absorption-line center.

Fig. 14
Fig. 14

Long-term recording of the spectral position of the PAO emission relative to the absorption-line center.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

δ S = G S ¯ m d 2 T d υ 2 δ υ ,
δ S δ υ = G S ¯ m exp ( n L σ 0 ) L n d 2 σ d υ 2 ( δ υ = 0 ) ,
R S = δ S ( δ υ ) S ¯ 70 dB .
V ( t ) = V λ / 4 x ( 1 t t p ) for 0 t t P ,
τ ( t ) = 1 , ρ ( t ) = 0 , for t 0 , τ ( t ) = cos ( Π 2 t t P ) , ρ ( t ) = sin ( Π 2 t t P ) , for 0 t t P , τ ( t ) = 0 , ρ ( t ) = 1 , for t t P .
s ( t ) = τ ( t t R ) ρ ( t ) .
a ( t ) = [ n s ( t n t R ) exp ( 2 i π ν 0 t ) ] e ( t ) ,
a ( t ) = { [ s ( t ) exp ( 2 i π ν 0 t ) ] C t R ( t ) } e ( t ) ,
I ( ν ) = { FT [ a ( t ) ] } 2 = { [ γ ( ν ν 0 ) C ν R ( ν ) ] ( ν ) } 2 ,
I ( ν ) = [ γ ( ν ν 0 ) ] 2 { C ν R ( ν ) [ ( ν ) ] 2 } ,
I ( ν ) = [ γ ( ν ν 0 ) ] 2 { m [ ( ν m ν R ) ] 2 } ,
Γ ( ν ν 0 ) = [ γ ( ν ν 0 ) ] 2 .
γ ( u ) = x { cos [ Π ( u + 1 / 4 ) ] sinc [ Π ( u x + 1 / 4 ) + cos [ Π ( u 1 / 4 ) ] sinc [ Π ( u x 1 / 4 ) } + ( 1 x ) sinc [ Π ( 1 x ) u ] ,

Metrics