Abstract

The need for an instrument capable of measuring water-vapor fluxes over mixed canopy and large areas has long been recognized. Such a device would greatly enhance the study of evapotranspiration processes and has great practical value for water management. To address this problem, a scanning water Raman lidar has been designed and constructed. Analytical methods have also been developed to take advantage of the type of information that this lidar can generate. The lidar is able to measure the absolute water content and calculate the evaporative flux quickly over relatively large areas. This capability provides new opportunities for the study of microscale atmospheric processes. The variogram data indicate that the spatial sampling size must be of the order of 10 m if fluxes and scalars are to be properly represented. Examples of data are presented.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Springer Series in Applied Physics (Springer-Verlag, New York, 1976), pp. 238–290.
    [CrossRef]
  2. E. W. Eloranta, J. L. Schols, “Measurements of spatially averaged wind profiles with volume imaging lidar,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.
  3. Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
    [CrossRef]
  4. J. Sroga, E. W. Eloranta, “Lidar measurement of wind velocity profiles in the boundary layer,” J. Appl. Meteorol. 19, 598–605 (1980).
    [CrossRef]
  5. W. Hooper, E. W. Eloranta, “Lidar measurement of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
    [CrossRef]
  6. I. Kolev, O. Parvanov, B. Kaprielov, “Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer,” Appl. Opt. 27, 2524–2531 (1988).
    [CrossRef] [PubMed]
  7. H. A. Panofsky, J. A. Dutton, Atmospheric Turbulence (Wiley, New York, 1984), Chap. 3, p. 33.
  8. W. Brutsaert, Evaporation into the Atmosphere (Reidel, Dordrecht, The Netherlands, 1984), Chap. 4, p. 57.
  9. S. Corrosin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22, 469–473 (1951).
    [CrossRef]
  10. C. H. Champagne, C. A. Friehe, J. C. LaRue, “Flux measurements, flux estimation techniques, and fine scale turbulence measurements in the unstable surface layer over land,” J. Atmos. Sci. 34, 515–529 (1977).
    [CrossRef]
  11. J. Cooney, “Remote measurements of atmospheric water-vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
    [CrossRef]
  12. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water-vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
    [CrossRef]
  13. F. J. Barnes, R. R. Karl, G. L. Stone, K. E. Kunkel, “Remote sensing of the environment,” 32, 81–90 (1990).
    [CrossRef]
  14. E. K. Webb, G. I. Pearman, R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Q. J. R. Meteorol. Soc. 106, 85–100 (1980).
    [CrossRef]
  15. J. C. Davis, Statistics and Data Analysis in Geology, 2nd ed. (Wiley, New York, 1986), Chap. 4, p. 141.
  16. J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
    [CrossRef]
  17. W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
    [CrossRef]
  18. P. H. Caramori, P. H. Schuepp, R. L. Desjardins, J. I. Macpherson, “Structural analysis of airborne vapor flux traces over a region,” presented at the Tenth Conference on Biometeorology and Aerobiology, Special Session on Hydrometerology, Salt Lake City, Utah, 10–13 September 1991.
  19. L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987), Chap. 3, p. 129.
  20. J. C. Kaimkal, J. C. Wyngaard, Y. Izumi, O. R. Cote, “Spectral characteristics of surface layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
    [CrossRef]

1993 (1)

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

1990 (1)

F. J. Barnes, R. R. Karl, G. L. Stone, K. E. Kunkel, “Remote sensing of the environment,” 32, 81–90 (1990).
[CrossRef]

1988 (1)

1986 (1)

W. Hooper, E. W. Eloranta, “Lidar measurement of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

1982 (1)

Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
[CrossRef]

1980 (2)

J. Sroga, E. W. Eloranta, “Lidar measurement of wind velocity profiles in the boundary layer,” J. Appl. Meteorol. 19, 598–605 (1980).
[CrossRef]

E. K. Webb, G. I. Pearman, R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Q. J. R. Meteorol. Soc. 106, 85–100 (1980).
[CrossRef]

1977 (1)

C. H. Champagne, C. A. Friehe, J. C. LaRue, “Flux measurements, flux estimation techniques, and fine scale turbulence measurements in the unstable surface layer over land,” J. Atmos. Sci. 34, 515–529 (1977).
[CrossRef]

1972 (1)

J. C. Kaimkal, J. C. Wyngaard, Y. Izumi, O. R. Cote, “Spectral characteristics of surface layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

1971 (1)

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

1970 (1)

J. Cooney, “Remote measurements of atmospheric water-vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

1969 (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water-vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[CrossRef]

1951 (1)

S. Corrosin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22, 469–473 (1951).
[CrossRef]

Barnes, F. J.

F. J. Barnes, R. R. Karl, G. L. Stone, K. E. Kunkel, “Remote sensing of the environment,” 32, 81–90 (1990).
[CrossRef]

Bradley, E. F.

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

Brutsaert, W.

W. Brutsaert, Evaporation into the Atmosphere (Reidel, Dordrecht, The Netherlands, 1984), Chap. 4, p. 57.

Businger, J. A.

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

Caramori, P. H.

P. H. Caramori, P. H. Schuepp, R. L. Desjardins, J. I. Macpherson, “Structural analysis of airborne vapor flux traces over a region,” presented at the Tenth Conference on Biometeorology and Aerobiology, Special Session on Hydrometerology, Salt Lake City, Utah, 10–13 September 1991.

Champagne, C. H.

C. H. Champagne, C. A. Friehe, J. C. LaRue, “Flux measurements, flux estimation techniques, and fine scale turbulence measurements in the unstable surface layer over land,” J. Atmos. Sci. 34, 515–529 (1977).
[CrossRef]

Cooney, J.

J. Cooney, “Remote measurements of atmospheric water-vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

Cooper, D. I.

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

Corrosin, S.

S. Corrosin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22, 469–473 (1951).
[CrossRef]

Cote, O. R.

J. C. Kaimkal, J. C. Wyngaard, Y. Izumi, O. R. Cote, “Spectral characteristics of surface layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Davis, J. C.

J. C. Davis, Statistics and Data Analysis in Geology, 2nd ed. (Wiley, New York, 1986), Chap. 4, p. 141.

Desjardins, R. L.

P. H. Caramori, P. H. Schuepp, R. L. Desjardins, J. I. Macpherson, “Structural analysis of airborne vapor flux traces over a region,” presented at the Tenth Conference on Biometeorology and Aerobiology, Special Session on Hydrometerology, Salt Lake City, Utah, 10–13 September 1991.

Dutton, J. A.

H. A. Panofsky, J. A. Dutton, Atmospheric Turbulence (Wiley, New York, 1984), Chap. 3, p. 33.

Eichinger, W. E.

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

Eloranta, E. W.

W. Hooper, E. W. Eloranta, “Lidar measurement of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

J. Sroga, E. W. Eloranta, “Lidar measurement of wind velocity profiles in the boundary layer,” J. Appl. Meteorol. 19, 598–605 (1980).
[CrossRef]

E. W. Eloranta, J. L. Schols, “Measurements of spatially averaged wind profiles with volume imaging lidar,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.

Friehe, C. A.

C. H. Champagne, C. A. Friehe, J. C. LaRue, “Flux measurements, flux estimation techniques, and fine scale turbulence measurements in the unstable surface layer over land,” J. Atmos. Sci. 34, 515–529 (1977).
[CrossRef]

Hinkley, E. D.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Springer Series in Applied Physics (Springer-Verlag, New York, 1976), pp. 238–290.
[CrossRef]

Hipps, L.

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

Hirohara, H.

Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
[CrossRef]

Holtkamp, D. B.

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

Hooper, W.

W. Hooper, E. W. Eloranta, “Lidar measurement of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

Izumi, Y.

J. C. Kaimkal, J. C. Wyngaard, Y. Izumi, O. R. Cote, “Spectral characteristics of surface layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

Kaimkal, J. C.

J. C. Kaimkal, J. C. Wyngaard, Y. Izumi, O. R. Cote, “Spectral characteristics of surface layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Kaprielov, B.

Karl, R. R.

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

F. J. Barnes, R. R. Karl, G. L. Stone, K. E. Kunkel, “Remote sensing of the environment,” 32, 81–90 (1990).
[CrossRef]

Kawaramura, T.

Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
[CrossRef]

Kelley, P. L.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Springer Series in Applied Physics (Springer-Verlag, New York, 1976), pp. 238–290.
[CrossRef]

Kolev, I.

Ku, R. T.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Springer Series in Applied Physics (Springer-Verlag, New York, 1976), pp. 238–290.
[CrossRef]

Kunkel, K. E.

F. J. Barnes, R. R. Karl, G. L. Stone, K. E. Kunkel, “Remote sensing of the environment,” 32, 81–90 (1990).
[CrossRef]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987), Chap. 3, p. 129.

LaRue, J. C.

C. H. Champagne, C. A. Friehe, J. C. LaRue, “Flux measurements, flux estimation techniques, and fine scale turbulence measurements in the unstable surface layer over land,” J. Atmos. Sci. 34, 515–529 (1977).
[CrossRef]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water-vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[CrossRef]

Leuning, R.

E. K. Webb, G. I. Pearman, R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Q. J. R. Meteorol. Soc. 106, 85–100 (1980).
[CrossRef]

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987), Chap. 3, p. 129.

Macpherson, J. I.

P. H. Caramori, P. H. Schuepp, R. L. Desjardins, J. I. Macpherson, “Structural analysis of airborne vapor flux traces over a region,” presented at the Tenth Conference on Biometeorology and Aerobiology, Special Session on Hydrometerology, Salt Lake City, Utah, 10–13 September 1991.

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water-vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[CrossRef]

Melfi, S. H.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water-vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[CrossRef]

Moses, J. D.

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

Panofsky, H. A.

H. A. Panofsky, J. A. Dutton, Atmospheric Turbulence (Wiley, New York, 1984), Chap. 3, p. 33.

Parvanov, O.

Pearman, G. I.

E. K. Webb, G. I. Pearman, R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Q. J. R. Meteorol. Soc. 106, 85–100 (1980).
[CrossRef]

Quick, C. R.

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

Sasano, Y.

Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
[CrossRef]

Schols, J. L.

E. W. Eloranta, J. L. Schols, “Measurements of spatially averaged wind profiles with volume imaging lidar,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.

Schuepp, P. H.

P. H. Caramori, P. H. Schuepp, R. L. Desjardins, J. I. Macpherson, “Structural analysis of airborne vapor flux traces over a region,” presented at the Tenth Conference on Biometeorology and Aerobiology, Special Session on Hydrometerology, Salt Lake City, Utah, 10–13 September 1991.

Shimizu, H.

Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
[CrossRef]

Sroga, J.

J. Sroga, E. W. Eloranta, “Lidar measurement of wind velocity profiles in the boundary layer,” J. Appl. Meteorol. 19, 598–605 (1980).
[CrossRef]

Stone, G. L.

F. J. Barnes, R. R. Karl, G. L. Stone, K. E. Kunkel, “Remote sensing of the environment,” 32, 81–90 (1990).
[CrossRef]

Takeuchi, N.

Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
[CrossRef]

Tiee, J. J.

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

Webb, E. K.

E. K. Webb, G. I. Pearman, R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Q. J. R. Meteorol. Soc. 106, 85–100 (1980).
[CrossRef]

Wyngaard, J. C.

J. C. Kaimkal, J. C. Wyngaard, Y. Izumi, O. R. Cote, “Spectral characteristics of surface layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

Yamasaki, T.

Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water-vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[CrossRef]

Boundary Layer Meteorol. (1)

W. E. Eichinger, D. I. Cooper, D. B. Holtkamp, R. R. Karl, J. D. Moses, C. R. Quick, J. J. Tiee, L. Hipps, “Derivation of water-vapor fluxes from lidar measurements,” Boundary Layer Meteorol. 63, 39–64 (1993).
[CrossRef]

J. Appl. Meteorol. (3)

J. Cooney, “Remote measurements of atmospheric water-vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

Y. Sasano, H. Hirohara, T. Yamasaki, H. Shimizu, N. Takeuchi, T. Kawaramura, “Horizonal wind vector determination from the displacement of aerosol distribution patterns observed by a scanning lidar,” J. Appl. Meteorol. 21, 1516–1523 (1982).
[CrossRef]

J. Sroga, E. W. Eloranta, “Lidar measurement of wind velocity profiles in the boundary layer,” J. Appl. Meteorol. 19, 598–605 (1980).
[CrossRef]

J. Appl. Phys. (1)

S. Corrosin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22, 469–473 (1951).
[CrossRef]

J. Atmos. Sci. (2)

C. H. Champagne, C. A. Friehe, J. C. LaRue, “Flux measurements, flux estimation techniques, and fine scale turbulence measurements in the unstable surface layer over land,” J. Atmos. Sci. 34, 515–529 (1977).
[CrossRef]

J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28, 181–189 (1971).
[CrossRef]

J. Climate Appl. Meteorol. (1)

W. Hooper, E. W. Eloranta, “Lidar measurement of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

Q. J. R. Meteorol. Soc. (2)

E. K. Webb, G. I. Pearman, R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Q. J. R. Meteorol. Soc. 106, 85–100 (1980).
[CrossRef]

J. C. Kaimkal, J. C. Wyngaard, Y. Izumi, O. R. Cote, “Spectral characteristics of surface layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Remote sensing of the environment (1)

F. J. Barnes, R. R. Karl, G. L. Stone, K. E. Kunkel, “Remote sensing of the environment,” 32, 81–90 (1990).
[CrossRef]

Other (7)

J. C. Davis, Statistics and Data Analysis in Geology, 2nd ed. (Wiley, New York, 1986), Chap. 4, p. 141.

P. H. Caramori, P. H. Schuepp, R. L. Desjardins, J. I. Macpherson, “Structural analysis of airborne vapor flux traces over a region,” presented at the Tenth Conference on Biometeorology and Aerobiology, Special Session on Hydrometerology, Salt Lake City, Utah, 10–13 September 1991.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987), Chap. 3, p. 129.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed., Vol. 14 of Springer Series in Applied Physics (Springer-Verlag, New York, 1976), pp. 238–290.
[CrossRef]

E. W. Eloranta, J. L. Schols, “Measurements of spatially averaged wind profiles with volume imaging lidar,” presented at the Fifteenth International Laser Radar Conference, Tomsk, Russia, 23–27 July 1990.

H. A. Panofsky, J. A. Dutton, Atmospheric Turbulence (Wiley, New York, 1984), Chap. 3, p. 33.

W. Brutsaert, Evaporation into the Atmosphere (Reidel, Dordrecht, The Netherlands, 1984), Chap. 4, p. 57.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

System diagram of the main lidar components. The optical board and the lidar are mounted inside a truck equipped with an external generator. The system is fully mobile and self-contained. CAMAC, computer automated measurement and control; PM, photomultiplier.

Fig. 2
Fig. 2

Sample one-dimensional data set taken at Maricopa, Arizona, during the Maricopa Agricultural Center field campaign (MAC-V) experiment: (a) raw nitrogen and water returns from a typical shot, (b) divided and attenuation-corrected water concentrations. These data were taken with a solar-blind photomultiplier behind the water filter.

Fig. 3
Fig. 3

Water-vapor concentration over a uniform alfalfa field at 1118 h, 28 June 1990 during the Maricopa experiment at an elevation of 3.2 m above the ground. The data were taken with a horizontal lidar scan over a period of 2 min. This method enables fast, high-spatial-resolution data collection over relatively large areas. Of particular note is the factor-of-3 variation in water-vapor concentration (7–21 g H2O/kg air) over an experimental field of exceptional uniformity.

Fig. 4
Fig. 4

Comparison of lidar-derived water-vapor mixing ratios and those derived from capacitance hygrometers at (a) 98 m and (b) 153 m from the lidar. The data from both instruments have been averaged over a 100-s interval to approximate the response time of the hygrometers. The experiment took place in Bayo Canyon, Los Alamos County, New Mexico.

Fig. 5
Fig. 5

Comparison of lidar water-vapor concentrations with those from conventional psychrometers and capacitance hygrometers: (a) data in which the lidar time resolution was degraded to match that of the comparison instrument, (b) data in which the lidar time resolution was not degraded. The apparent variations in (b) are due to the long (>20-s) time constant of the capacitance hygrometer and its inability to track water-vapor fluctuations of the order of a few seconds or less.

Fig. 6
Fig. 6

Kriged LE surface at 1130 h, day 179, during the MAC-V experiment, derived from a 30-min average from the seven point instruments (top). The water-vapor-concentration surface derived from the lidar, at 1130 h, day 179, is shown at the bottom. Values are indicated by the height of the surface as well as by the shade. The locations of the seven point instruments are also shown.

Fig. 7
Fig. 7

Variograms of lidar-derived water concentrations from various times, day 179, 1990, during the MAC-V experiment. The solid curves represent a Gaussian distribution of structure sizes fitted to the data.

Fig. 8
Fig. 8

Comparison of water-vapor fluxes calculated from lidar vertical profiles to that derived from standard micrometeorological instruments for 28 June 1990, as a function of time of day during the MAC-V experiment. The conventional instrument comparisons are the high and low measurements made in the field at the times indicated. MST, Mountain Standard Time.

Fig. 9
Fig. 9

Spatial variation in water-vapor flux across a uniform alfalfa field as determined by use of the vertical-profile method.

Fig. 10
Fig. 10

Comparison of spatial and temporal spectra derived from lidar water concentrations at approximately 0956 h, 29 June 1990, during the MAC-V experiment. Also shown is the −5/3 slope predicted by Kolmogorov theory. TD, time-dimensional; 2D, two dimensional.

Fig. 11
Fig. 11

Comparison of 28 June 1990 water-vapor fluxes calculated from lidar spatial and temporal spectra with fluxes derived from standard micrometeorological (Micro-Met) instruments for as a function of time of day during the MAC-V experiment. The conventional instrument comparisons are the high and low measurements made in the field at the times indicated. Hor, horizontal.

Tables (1)

Tables Icon

Table 1 Current Lidar Operational Parameters

Metrics