Abstract

A novel-type Raman cell especially suitable for the generation of tunable vacuum ultraviolet (VUV) radiation with pump radiation from a frequency-doubled dye laser is described. This hydrogen-filled Raman cell permits the generation of narrow-bandwidth radiation to below 114 nm. Absolute VUV energies in the various anti-Stokes orders and measurements of pulse durations and pressure dependences are given.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schomburg, H. F. Döbele, B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
    [CrossRef]
  2. H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
    [CrossRef]
  3. V. Wilke, W. Schmidt, “Tunable UV radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978); “Tunable coherent radiation source covering a spectral range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
    [CrossRef]
  4. D. J. Brink, D. Proch, “Efficient tunable ultraviolet source based on stimulated Raman scattering of an excimer-pumped dye laser,” Opt. Lett. 7, 494–496 (1982).
    [CrossRef] [PubMed]
  5. J. C. White, J. Bokor, R. R. Freeman, D. Henderson, “Tunable ArF* excimer-laser source,” Opt. Lett. 6, 293–294 (1981).
    [CrossRef] [PubMed]
  6. R. S. Hargrove, J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped, stimulated Raman scattering in H2,” in Conference on Lasers and Electro-Optics (Optical Society of American, Washington, D.C., 1979), pp. ThA61-ThA64.
  7. H. F. Döbele, M. Hörl, M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
    [CrossRef]
  8. M. Röwekamp, A. Goehlich, H. F. Döbele, “Diagnostics of sputtering processes of carbon and carbides by laser-induced fluorescence spectroscopy in the VUV at 166 nm,” Appl. Phys. A 54, 61–67 (1992).
    [CrossRef]
  9. A. Goehlich, M. Röwekamp, H. F. Döbele, “Determination of the velocity distribution of sputtered atomic oxygen by laser-induced fluorescence in the vacuum-ultraviolet (130 nm),” Surf. Sci. 248, 271–275 (1991).
    [CrossRef]
  10. P. Bogen, Ph. Mertens, E. Pasch, H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
    [CrossRef]
  11. W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift of the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
    [CrossRef] [PubMed]
  12. D. J. Brink, D. Proch, “Angular distribution of high-order anti-Stokes stimulated Raman scattering in hydrogen,” J. Opt. Soc. Am. 73, 23–25 (1983).
    [CrossRef]
  13. A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A 33, 1788–1797 (1986).
    [CrossRef] [PubMed]
  14. M. Maier, “Applications of stimulated Raman scattering,” Appl. Phys. 11, 209–231 (1976).
    [CrossRef]
  15. W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in Proceedings of the AIP Conference on Excimer Lasers, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.

1992 (2)

M. Röwekamp, A. Goehlich, H. F. Döbele, “Diagnostics of sputtering processes of carbon and carbides by laser-induced fluorescence spectroscopy in the VUV at 166 nm,” Appl. Phys. A 54, 61–67 (1992).
[CrossRef]

P. Bogen, Ph. Mertens, E. Pasch, H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[CrossRef]

1991 (1)

A. Goehlich, M. Röwekamp, H. F. Döbele, “Determination of the velocity distribution of sputtered atomic oxygen by laser-induced fluorescence in the vacuum-ultraviolet (130 nm),” Surf. Sci. 248, 271–275 (1991).
[CrossRef]

1988 (1)

H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[CrossRef]

1987 (1)

H. F. Döbele, M. Hörl, M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

1986 (2)

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift of the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[CrossRef] [PubMed]

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A 33, 1788–1797 (1986).
[CrossRef] [PubMed]

1983 (2)

H. Schomburg, H. F. Döbele, B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[CrossRef]

D. J. Brink, D. Proch, “Angular distribution of high-order anti-Stokes stimulated Raman scattering in hydrogen,” J. Opt. Soc. Am. 73, 23–25 (1983).
[CrossRef]

1982 (1)

1981 (1)

1978 (1)

V. Wilke, W. Schmidt, “Tunable UV radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978); “Tunable coherent radiation source covering a spectral range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
[CrossRef]

1976 (1)

M. Maier, “Applications of stimulated Raman scattering,” Appl. Phys. 11, 209–231 (1976).
[CrossRef]

Bischel, W. K.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift of the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[CrossRef] [PubMed]

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A 33, 1788–1797 (1986).
[CrossRef] [PubMed]

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in Proceedings of the AIP Conference on Excimer Lasers, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.

Black, G.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in Proceedings of the AIP Conference on Excimer Lasers, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.

Bogen, P.

Bokor, J.

Brink, D. J.

Döbele, H. F.

M. Röwekamp, A. Goehlich, H. F. Döbele, “Diagnostics of sputtering processes of carbon and carbides by laser-induced fluorescence spectroscopy in the VUV at 166 nm,” Appl. Phys. A 54, 61–67 (1992).
[CrossRef]

P. Bogen, Ph. Mertens, E. Pasch, H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[CrossRef]

A. Goehlich, M. Röwekamp, H. F. Döbele, “Determination of the velocity distribution of sputtered atomic oxygen by laser-induced fluorescence in the vacuum-ultraviolet (130 nm),” Surf. Sci. 248, 271–275 (1991).
[CrossRef]

H. F. Döbele, M. Hörl, M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

H. Schomburg, H. F. Döbele, B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[CrossRef]

Dyer, M. J.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift of the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[CrossRef] [PubMed]

Freeman, R. R.

Goehlich, A.

M. Röwekamp, A. Goehlich, H. F. Döbele, “Diagnostics of sputtering processes of carbon and carbides by laser-induced fluorescence spectroscopy in the VUV at 166 nm,” Appl. Phys. A 54, 61–67 (1992).
[CrossRef]

A. Goehlich, M. Röwekamp, H. F. Döbele, “Determination of the velocity distribution of sputtered atomic oxygen by laser-induced fluorescence in the vacuum-ultraviolet (130 nm),” Surf. Sci. 248, 271–275 (1991).
[CrossRef]

Hargrove, R. S.

R. S. Hargrove, J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped, stimulated Raman scattering in H2,” in Conference on Lasers and Electro-Optics (Optical Society of American, Washington, D.C., 1979), pp. ThA61-ThA64.

Henderson, D.

Hickman, A. P.

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A 33, 1788–1797 (1986).
[CrossRef] [PubMed]

Hörl, M.

H. F. Döbele, M. Hörl, M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Maier, M.

M. Maier, “Applications of stimulated Raman scattering,” Appl. Phys. 11, 209–231 (1976).
[CrossRef]

Mertens, Ph.

Paisner, J. A.

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A 33, 1788–1797 (1986).
[CrossRef] [PubMed]

R. S. Hargrove, J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped, stimulated Raman scattering in H2,” in Conference on Lasers and Electro-Optics (Optical Society of American, Washington, D.C., 1979), pp. ThA61-ThA64.

Pasch, E.

Proch, D.

Röwekamp, M.

M. Röwekamp, A. Goehlich, H. F. Döbele, “Diagnostics of sputtering processes of carbon and carbides by laser-induced fluorescence spectroscopy in the VUV at 166 nm,” Appl. Phys. A 54, 61–67 (1992).
[CrossRef]

A. Goehlich, M. Röwekamp, H. F. Döbele, “Determination of the velocity distribution of sputtered atomic oxygen by laser-induced fluorescence in the vacuum-ultraviolet (130 nm),” Surf. Sci. 248, 271–275 (1991).
[CrossRef]

H. F. Döbele, M. Hörl, M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Rückle, B.

H. Schomburg, H. F. Döbele, B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[CrossRef]

Schmidt, W.

V. Wilke, W. Schmidt, “Tunable UV radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978); “Tunable coherent radiation source covering a spectral range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
[CrossRef]

Schomburg, H.

H. Schomburg, H. F. Döbele, B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[CrossRef]

Wallmeier, H.

H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[CrossRef]

White, J. C.

Wilke, V.

V. Wilke, W. Schmidt, “Tunable UV radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978); “Tunable coherent radiation source covering a spectral range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
[CrossRef]

Zacharias, H.

H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[CrossRef]

Appl. Phys. (2)

V. Wilke, W. Schmidt, “Tunable UV radiation by stimulated Raman scattering in hydrogen,” Appl. Phys. 16, 151–154 (1978); “Tunable coherent radiation source covering a spectral range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
[CrossRef]

M. Maier, “Applications of stimulated Raman scattering,” Appl. Phys. 11, 209–231 (1976).
[CrossRef]

Appl. Phys. A (1)

M. Röwekamp, A. Goehlich, H. F. Döbele, “Diagnostics of sputtering processes of carbon and carbides by laser-induced fluorescence spectroscopy in the VUV at 166 nm,” Appl. Phys. A 54, 61–67 (1992).
[CrossRef]

Appl. Phys. B (3)

H. Schomburg, H. F. Döbele, B. Rückle, “Generation of tunable narrow-bandwidth VUV radiation by anti-Stokes SRS in H2,” Appl. Phys. B 30, 131–134 (1983).
[CrossRef]

H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[CrossRef]

H. F. Döbele, M. Hörl, M. Röwekamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. A (2)

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift of the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[CrossRef] [PubMed]

A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A 33, 1788–1797 (1986).
[CrossRef] [PubMed]

Surf. Sci. (1)

A. Goehlich, M. Röwekamp, H. F. Döbele, “Determination of the velocity distribution of sputtered atomic oxygen by laser-induced fluorescence in the vacuum-ultraviolet (130 nm),” Surf. Sci. 248, 271–275 (1991).
[CrossRef]

Other (2)

R. S. Hargrove, J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped, stimulated Raman scattering in H2,” in Conference on Lasers and Electro-Optics (Optical Society of American, Washington, D.C., 1979), pp. ThA61-ThA64.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in Proceedings of the AIP Conference on Excimer Lasers, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy levels for SARS from hydrogen and k-vector phase-matching geometry: AS, anti-Stokes.

Fig. 2
Fig. 2

Variants of liquid-nitrogen-cooled Raman cells: (a) concentric version, (b) long version with cooling of central part.

Fig. 3
Fig. 3

Scheme of novel Raman cell.

Fig. 4
Fig. 4

Experimental setup for the VUV radiation energy measurements: SHG, second-harmonic generation; PMT, photomultiplier tube.

Fig. 5
Fig. 5

Time dependence of anti-Stokes pulses (same trigger in all cases). Pulse shapes are shown for (a) the pump laser, (b) the first Stokes line (SI), (c) the first anti-Stokes Une (AS1), (d) the eighth anti-Stokes Une (AS8).

Fig. 6
Fig. 6

Anti-Stokes pulse energy versus hydrogen pressure.

Fig. 7
Fig. 7

Energy of second anti-Stokes (2.AS) and eighth anti-Stokes (8.AS) components versus dye laser pump energy.

Tables (1)

Tables Icon

Table 1 Results for the Various Anti-Stokes Components for Pump Radiation with E = 6 mJ at λ = 223 nm and Operating Pressure ρ(H2) = 1 bar

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g s = 16 π 2 c 2 ћ n s 2 ω 0 ω s 2 Δ n Δ ω r d σ d Ω .

Metrics