Abstract

The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, “Space coherent optical communication systems—an introduction,” J. Lightwave Technol. LT-5, 633–637 (1987).
    [CrossRef]
  2. J. S. Fender, “Phased array optical systems,” in Infrared, Adaptive, and Synthetic Aperture Optical Systems, J. S. Fender, R. B. Johnson, W. L. Wolfe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.643, 122–128 (1986).
  3. J. M. Geary, B. D. O’Neil, “Polarization effects in Young systems,” Opt. Eng. 29, 140–147 (1990).
    [CrossRef]
  4. L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
  5. E. K. Hege, J. M. Beckers, P. A. Schrittmatter, D. W. McCarthy, “Multiple mirror telescope as a phased array telescope,” Appl. Opt. 24, 2565–2576 (1985).
    [CrossRef] [PubMed]
  6. P. Wizinowich, B. McLeod, M. Lloyd-Hart, J. R. P. Angel, D. Colucci, R. Dekany, D. McCarthy, D. Wittman, I. Scott-Fleming, “Adaptive optics for array telescopes using piston-and-tilt wave-front sensing,” Appl. Opt. 31, 6036–6046 (1992).
    [CrossRef] [PubMed]
  7. J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).
  8. S. Shaklan, “Fiber optic beam combiner for multiple-telescope interferometry,” Opt. Eng. 29, 684–689 (1990).
    [CrossRef]
  9. F. Reynaud, J. J. Alleman, P. Connes, “Interferometric control of fiber lengths for a coherent telescope array,” Appl. Opt. 31, 3736–3743 (1992).
    [CrossRef] [PubMed]
  10. C. L. Hayes, R. A. Brandewie, W. C. Davis, G. E. Mevers, “Experimental test of an infrared phase conjugation adaptive array,” J. Opt. Soc. Am. 67, 269–277 (1977).
    [CrossRef]
  11. J. S. Fender, R. A. Carreras, “Demonstration of an optically phased telescope array,” Opt. Eng. 27, 706–711 (1988).
  12. C. R. De Hainaut, K. P. Hentz, L. D. Weaver, J. D. Gonglewski, “Design of a wide field of view phased array telescope,” Opt. Eng. 27, 736–739 (1988).
  13. C. Tipton, J. Meinhardt, M. Jamshidi, “Control system description and performance of a phased array telescope,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 445–455 (1990).
  14. L. B. Mercer, “Adaptive coherent optical receiver array,” Electron. Lett. 26, 1518–1520 (1990).
    [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  16. B. J. Klein, J. J. Degnan, “Optical antenna gain. 1. Transmitting antennas,” Appl. Opt. 13, 2134–2141 (1974).
    [CrossRef] [PubMed]
  17. W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Non-mechanical steering of laser beams by multiple aperture antennas: tolerance analysis,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 122–130 (1991).
  18. W. M. Neubert, W. Klaus, W. R. Leeb, A. F. Popescu, A. L. Scholtz, “Synchronizing frequency and phase of non-overlapping laser beams,” J. Opt. Commun. 14, 138–141 (1993).
    [CrossRef]
  19. W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental implementation of an optical multiple-aperture antenna for space communications,” in Optical Space Communication II, J. Franz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1522, 93–102 (1991).
  20. D. A. Jackson, R. Priest, A. Dandridge, A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using apiezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926–2929 (1980).
    [CrossRef] [PubMed]
  21. W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies TV, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1635, 82–89 (1992).
  22. B. J. Cassarly, J. C. Ehlert, D. J. Henry, “Low-insertion loss high precision liquid crystal optical phased array,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 110–121 (1991).

1993 (1)

W. M. Neubert, W. Klaus, W. R. Leeb, A. F. Popescu, A. L. Scholtz, “Synchronizing frequency and phase of non-overlapping laser beams,” J. Opt. Commun. 14, 138–141 (1993).
[CrossRef]

1992 (2)

1990 (3)

L. B. Mercer, “Adaptive coherent optical receiver array,” Electron. Lett. 26, 1518–1520 (1990).
[CrossRef]

S. Shaklan, “Fiber optic beam combiner for multiple-telescope interferometry,” Opt. Eng. 29, 684–689 (1990).
[CrossRef]

J. M. Geary, B. D. O’Neil, “Polarization effects in Young systems,” Opt. Eng. 29, 140–147 (1990).
[CrossRef]

1988 (3)

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

J. S. Fender, R. A. Carreras, “Demonstration of an optically phased telescope array,” Opt. Eng. 27, 706–711 (1988).

C. R. De Hainaut, K. P. Hentz, L. D. Weaver, J. D. Gonglewski, “Design of a wide field of view phased array telescope,” Opt. Eng. 27, 736–739 (1988).

1987 (1)

V. W. S. Chan, “Space coherent optical communication systems—an introduction,” J. Lightwave Technol. LT-5, 633–637 (1987).
[CrossRef]

1985 (1)

1980 (1)

1977 (1)

1974 (1)

Alleman, J. J.

Angel, J. R. P.

Beckers, J. M.

E. K. Hege, J. M. Beckers, P. A. Schrittmatter, D. W. McCarthy, “Multiple mirror telescope as a phased array telescope,” Appl. Opt. 24, 2565–2576 (1985).
[CrossRef] [PubMed]

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Brandewie, R. A.

Braun, R.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Carreras, R. A.

J. S. Fender, R. A. Carreras, “Demonstration of an optically phased telescope array,” Opt. Eng. 27, 706–711 (1988).

Cassarly, B. J.

B. J. Cassarly, J. C. Ehlert, D. J. Henry, “Low-insertion loss high precision liquid crystal optical phased array,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 110–121 (1991).

Chan, V. W. S.

V. W. S. Chan, “Space coherent optical communication systems—an introduction,” J. Lightwave Technol. LT-5, 633–637 (1987).
[CrossRef]

Colucci, D.

Connes, P.

Dandridge, A.

Davis, W. C.

De Hainaut, C. R.

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

C. R. De Hainaut, K. P. Hentz, L. D. Weaver, J. D. Gonglewski, “Design of a wide field of view phased array telescope,” Opt. Eng. 27, 736–739 (1988).

Degnan, J. J.

Dekany, R.

Di Benedetto, G. P.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Ehlert, J. C.

B. J. Cassarly, J. C. Ehlert, D. J. Henry, “Low-insertion loss high precision liquid crystal optical phased array,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 110–121 (1991).

Enard, D.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Faucherre, M.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Fender, J. S.

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

J. S. Fender, R. A. Carreras, “Demonstration of an optically phased telescope array,” Opt. Eng. 27, 706–711 (1988).

J. S. Fender, “Phased array optical systems,” in Infrared, Adaptive, and Synthetic Aperture Optical Systems, J. S. Fender, R. B. Johnson, W. L. Wolfe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.643, 122–128 (1986).

Foy, R.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Geary, J. M.

J. M. Geary, B. D. O’Neil, “Polarization effects in Young systems,” Opt. Eng. 29, 140–147 (1990).
[CrossRef]

Genzel, R.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Gonglewski, J. D.

C. R. De Hainaut, K. P. Hentz, L. D. Weaver, J. D. Gonglewski, “Design of a wide field of view phased array telescope,” Opt. Eng. 27, 736–739 (1988).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Hayes, C. L.

Hege, E. K.

Henry, D. J.

B. J. Cassarly, J. C. Ehlert, D. J. Henry, “Low-insertion loss high precision liquid crystal optical phased array,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 110–121 (1991).

Hentz, K. P.

C. R. De Hainaut, K. P. Hentz, L. D. Weaver, J. D. Gonglewski, “Design of a wide field of view phased array telescope,” Opt. Eng. 27, 736–739 (1988).

Jackson, D. A.

Jamshidi, M.

C. Tipton, J. Meinhardt, M. Jamshidi, “Control system description and performance of a phased array telescope,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 445–455 (1990).

Klaus, W.

W. M. Neubert, W. Klaus, W. R. Leeb, A. F. Popescu, A. L. Scholtz, “Synchronizing frequency and phase of non-overlapping laser beams,” J. Opt. Commun. 14, 138–141 (1993).
[CrossRef]

Klein, B. J.

Koechlin, L.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Leeb, W. R.

W. M. Neubert, W. Klaus, W. R. Leeb, A. F. Popescu, A. L. Scholtz, “Synchronizing frequency and phase of non-overlapping laser beams,” J. Opt. Commun. 14, 138–141 (1993).
[CrossRef]

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Non-mechanical steering of laser beams by multiple aperture antennas: tolerance analysis,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 122–130 (1991).

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental implementation of an optical multiple-aperture antenna for space communications,” in Optical Space Communication II, J. Franz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1522, 93–102 (1991).

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies TV, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1635, 82–89 (1992).

Lloyd-Hart, M.

McCarthy, D.

McCarthy, D. W.

McLeod, B.

Meinhardt, J.

C. Tipton, J. Meinhardt, M. Jamshidi, “Control system description and performance of a phased array telescope,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 445–455 (1990).

Mercer, L. B.

L. B. Mercer, “Adaptive coherent optical receiver array,” Electron. Lett. 26, 1518–1520 (1990).
[CrossRef]

Merkle, F.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Mevers, G. E.

Neubert, W. M.

W. M. Neubert, W. Klaus, W. R. Leeb, A. F. Popescu, A. L. Scholtz, “Synchronizing frequency and phase of non-overlapping laser beams,” J. Opt. Commun. 14, 138–141 (1993).
[CrossRef]

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental implementation of an optical multiple-aperture antenna for space communications,” in Optical Space Communication II, J. Franz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1522, 93–102 (1991).

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies TV, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1635, 82–89 (1992).

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Non-mechanical steering of laser beams by multiple aperture antennas: tolerance analysis,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 122–130 (1991).

O’Neil, B. D.

J. M. Geary, B. D. O’Neil, “Polarization effects in Young systems,” Opt. Eng. 29, 140–147 (1990).
[CrossRef]

Popescu, A. F.

W. M. Neubert, W. Klaus, W. R. Leeb, A. F. Popescu, A. L. Scholtz, “Synchronizing frequency and phase of non-overlapping laser beams,” J. Opt. Commun. 14, 138–141 (1993).
[CrossRef]

Priest, R.

Reynaud, F.

Scholtz, A. L.

W. M. Neubert, W. Klaus, W. R. Leeb, A. F. Popescu, A. L. Scholtz, “Synchronizing frequency and phase of non-overlapping laser beams,” J. Opt. Commun. 14, 138–141 (1993).
[CrossRef]

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Non-mechanical steering of laser beams by multiple aperture antennas: tolerance analysis,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 122–130 (1991).

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies TV, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1635, 82–89 (1992).

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental implementation of an optical multiple-aperture antenna for space communications,” in Optical Space Communication II, J. Franz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1522, 93–102 (1991).

Schrittmatter, P. A.

Scott-Fleming, I.

Shaklan, S.

S. Shaklan, “Fiber optic beam combiner for multiple-telescope interferometry,” Opt. Eng. 29, 684–689 (1990).
[CrossRef]

Tipton, C.

C. Tipton, J. Meinhardt, M. Jamshidi, “Control system description and performance of a phased array telescope,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 445–455 (1990).

Tveten, A. B.

Weaver, L. D.

C. R. De Hainaut, K. P. Hentz, L. D. Weaver, J. D. Gonglewski, “Design of a wide field of view phased array telescope,” Opt. Eng. 27, 736–739 (1988).

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

Weigelt, G.

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Wittman, D.

Wizinowich, P.

Appl. Opt. (5)

Electron. Lett. (1)

L. B. Mercer, “Adaptive coherent optical receiver array,” Electron. Lett. 26, 1518–1520 (1990).
[CrossRef]

J. Lightwave Technol. (1)

V. W. S. Chan, “Space coherent optical communication systems—an introduction,” J. Lightwave Technol. LT-5, 633–637 (1987).
[CrossRef]

J. Opt. Commun. (1)

W. M. Neubert, W. Klaus, W. R. Leeb, A. F. Popescu, A. L. Scholtz, “Synchronizing frequency and phase of non-overlapping laser beams,” J. Opt. Commun. 14, 138–141 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (5)

J. S. Fender, R. A. Carreras, “Demonstration of an optically phased telescope array,” Opt. Eng. 27, 706–711 (1988).

C. R. De Hainaut, K. P. Hentz, L. D. Weaver, J. D. Gonglewski, “Design of a wide field of view phased array telescope,” Opt. Eng. 27, 736–739 (1988).

J. M. Geary, B. D. O’Neil, “Polarization effects in Young systems,” Opt. Eng. 29, 140–147 (1990).
[CrossRef]

L. D. Weaver, J. S. Fender, C. R. De Hainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

S. Shaklan, “Fiber optic beam combiner for multiple-telescope interferometry,” Opt. Eng. 29, 684–689 (1990).
[CrossRef]

Other (8)

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental results on an optical array antenna for non-mechanical beam steering,” in Free-Space Laser Communication Technologies TV, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1635, 82–89 (1992).

B. J. Cassarly, J. C. Ehlert, D. J. Henry, “Low-insertion loss high precision liquid crystal optical phased array,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 110–121 (1991).

J. S. Fender, “Phased array optical systems,” in Infrared, Adaptive, and Synthetic Aperture Optical Systems, J. S. Fender, R. B. Johnson, W. L. Wolfe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.643, 122–128 (1986).

C. Tipton, J. Meinhardt, M. Jamshidi, “Control system description and performance of a phased array telescope,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 445–455 (1990).

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Experimental implementation of an optical multiple-aperture antenna for space communications,” in Optical Space Communication II, J. Franz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1522, 93–102 (1991).

W. M. Neubert, W. R. Leeb, A. L. Scholtz, “Non-mechanical steering of laser beams by multiple aperture antennas: tolerance analysis,” in Free-Space Laser Communication Technologies III, D. L. Begley, B. D. Seery, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1417, 122–130 (1991).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

J. M. Beckers, D. Enard, M. Faucherre, F. Merkle, G. P. Di Benedetto, R. Braun, R. Foy, R. Genzel, L. Koechlin, G. Weigelt, “The VLT interferometer. I. Proposed implementation,” in Advanced Technology Optical Telescopes TV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 108–124 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Numerically calculated far-field intensity pattern for an array consisting of seven circular, contiguous subapertures fed by Gaussian beams with an optimum aperture-to-spot-size ratio (a) without beam steering, (b) with beam steering to a target located at x t /z t = 0, y t /z t = 0.75λ/2πa.

Fig. 2
Fig. 2

Block diagram of the experimental OPAA. AFS, acousto-optic frequency shifter; SM, single-mode; BP, bandpass; GRIN, gradient index.

Fig. 3
Fig. 3

Measured single-sweep IF signal spectrum (a) without piston control, indicating the spectral content of piston disturbances to be eliminated, and (b) with piston control.

Fig. 4
Fig. 4

Electrical characterization of the OPLL behavior. The solid lines show the calculated values, and the filled circles show the measured values: (a) magnitude of closed-loop transfer function |H(jf)|, (b) magnitude of piston-error rejection.

Fig. 5
Fig. 5

Normalized far-field intensity pattern of the experimental OPAA without beam steering: (a) measured three-dimensional plot, (b) horizontal (x) cross section, (c) vertical (y) cross section. In (b) and (c) the solid curves indicate the calculated intensity profile for perfect phasing and tilt alignment. The filled circles represent measured values.

Fig. 6
Fig. 6

Normalized far-field intensity pattern of the experimental OPAA under beam steering. One subantenna field is phase shifted by −1.05 rad, which corresponds to steering angles of x t /z t = 0 mr and y t /z t = 0.48 mr: (a) measured three-dimensional plot, (b) vertical cross-section. In (b) the solid curve shows the values calculated for perfect phasing according to Eq. (2) and ideal tilt alignment, the filled circles show measured intensity samples, and the dashed curve shows the calculated envelope function.

Fig. 7
Fig. 7

Vertical cross section of the far-field pattern envelope function. The solid curve shows the values calculated according to Eq. (3), and the filled circles show the measured intensity samples.

Fig. 8
Fig. 8

Measured increase of on-axis intensity as a function of time as a result of a step-shaped beam steering command.

Fig. 9
Fig. 9

Block diagram of a possible operational OPAA system fed by several laser sources. The IF signal strengths serve as tilt information. The IF signal frequencies are the input for the frequency-locking unit. Instead of the electro-optic bulk modulators, integrated optical phase modulators within the fiber paths could be used.

Fig. 10
Fig. 10

Outline of the telescope array module. AR, antireflection.

Fig. 11
Fig. 11

Array geometry of the proposed OPAA system. The hatched areas indicate the wave-front samples extracted with the sampling plate (compare with Fig. 10). The overall array diameter is 10 cm.

Tables (1)

Tables Icon

Table 1 Calculated Far-Field Pattern Parameters for the OPAA Geometry Suggested in Fig. 11 Assuming Optimum Aperture-to-Spot-Size Ratio

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , z ) ( 1 / λ z ) 2 | i = 1 N A i exp ( j p i ) exp [ j 2 π ( x x i + y y i ) / λ z ] F ( x / λ z t x i , y / λ z t y i ) | 2 .
p i = 2 π ( x t x i + y t y i ) / λ z t , i = 1 N ,
I ( x , y , z ) ( 1 / λ z ) 2 | N F ( x / λ z , y / λ z ) | 2 | i = 1 N ( A i / N ) exp { j 2 π [ ( x x i + y y i ) / λ z ( x t x i + y t y i ) / λ z t ] } | 2 .
ϑ t = 0 . 75 λ / 2 π a

Metrics