Abstract

A new laser Doppler blood flowmeter for measuring skin perfusion is presented. The flowmeter consists of a probe that uses two different wavelengths and is able to measure at different depths. It may be used to distinguish the superficial microcirculation of the skin providing nutritional flow and the flow in deeper situated blood vessels (thermoregulatory flow). Measurements and Monte Carlo simulations of the Doppler signals for human skin are shown.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications, J. T. Turner, ed. (U. Manchester Press, Swansea, UK), pp. IL3.1–IL3.17.
  2. M. D. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature (London) 254, 56–58 (1975).
    [CrossRef]
  3. R. F. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [CrossRef] [PubMed]
  4. G. E. Nilsson, T. Tenland, P. A. Öberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
    [CrossRef]
  5. G. E. Nilsson, “Signal processor for laser Doppler tissue flow meters,” Med. Biol. Eng. Com. 22, 343–348 (1984).
    [CrossRef]
  6. M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).
  7. L. Duteil, J. C. Bernengo, W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE Trans. Biomed. Eng. BME-32, 439–447 (1985).
    [CrossRef]
  8. A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, R. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurements using different lasers,” Med Biol. Eng. Comp. 26, 415–419 (1988).
    [CrossRef]
  9. H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
    [CrossRef] [PubMed]
  10. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Monte Carlo simulations and measurements of signals in laser Doppler flowmetry on human skin,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum Eng. 1431, 63–72 (1991).
  11. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
    [CrossRef] [PubMed]
  12. F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
    [CrossRef] [PubMed]
  13. H. Deblén, P. A. Öberg, “Frequency stabilization of multimode helium–neon lasers in laser Doppler flowmetry,” Med. Biol. Eng. Comp. 29, 470–474 (1991).
    [CrossRef]
  14. R. W. Wunderlich, R. L. Folger, D. B. Giddon, B. R. Ware, “Laser Doppler blood flow meter and optical plethysmograph,” Rev. Sci. Instrum. 51, 1258–1262 (1980).
    [CrossRef]
  15. H. E. Suichies, “Laser Doppler flowmetry in newborn infants,” Ph.D. dissertation (University of Groningen, Groningen, The Netherlands, 1990).
  16. S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1422, 3–13 (1991).
  17. V. S. Lee, L. Tarassenko, “Absorption and multiple scatteing by suspension of aligned red blood cells,” J. Opt. Soc. Am. A. 8, 1135–1141 (1991).
    [CrossRef] [PubMed]
  18. J. M. Steinke, A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A 5, 813–822 (1988).
    [CrossRef] [PubMed]
  19. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
    [CrossRef] [PubMed]
  20. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
    [CrossRef] [PubMed]
  21. R. J. Gush, T. A. King, “Investigations and improved performance of optical fibre probes in laser Doppler blood flow measurements,” Med. Biol. Eng. Comp. 25, 391–396 (1987).
    [CrossRef]
  22. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
    [CrossRef] [PubMed]

1993

1992

1991

H. Deblén, P. A. Öberg, “Frequency stabilization of multimode helium–neon lasers in laser Doppler flowmetry,” Med. Biol. Eng. Comp. 29, 470–474 (1991).
[CrossRef]

V. S. Lee, L. Tarassenko, “Absorption and multiple scatteing by suspension of aligned red blood cells,” J. Opt. Soc. Am. A. 8, 1135–1141 (1991).
[CrossRef] [PubMed]

1990

1988

1987

R. J. Gush, T. A. King, “Investigations and improved performance of optical fibre probes in laser Doppler blood flow measurements,” Med. Biol. Eng. Comp. 25, 391–396 (1987).
[CrossRef]

1985

L. Duteil, J. C. Bernengo, W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE Trans. Biomed. Eng. BME-32, 439–447 (1985).
[CrossRef]

1984

1981

1980

G. E. Nilsson, T. Tenland, P. A. Öberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

R. W. Wunderlich, R. L. Folger, D. B. Giddon, B. R. Ware, “Laser Doppler blood flow meter and optical plethysmograph,” Rev. Sci. Instrum. 51, 1258–1262 (1980).
[CrossRef]

1975

M. D. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature (London) 254, 56–58 (1975).
[CrossRef]

Aarnoudse, J. G.

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Monte Carlo simulations and measurements of signals in laser Doppler flowmetry on human skin,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum Eng. 1431, 63–72 (1991).

M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications, J. T. Turner, ed. (U. Manchester Press, Swansea, UK), pp. IL3.1–IL3.17.

Barnett, N. J.

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, R. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurements using different lasers,” Med Biol. Eng. Comp. 26, 415–419 (1988).
[CrossRef]

Bernengo, J. C.

L. Duteil, J. C. Bernengo, W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE Trans. Biomed. Eng. BME-32, 439–447 (1985).
[CrossRef]

Boggett, D. M.

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, R. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurements using different lasers,” Med Biol. Eng. Comp. 26, 415–419 (1988).
[CrossRef]

Bonner, R. F.

Dassel, A. C. M.

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Monte Carlo simulations and measurements of signals in laser Doppler flowmetry on human skin,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum Eng. 1431, 63–72 (1991).

de Mul, F. F. M.

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Monte Carlo simulations and measurements of signals in laser Doppler flowmetry on human skin,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum Eng. 1431, 63–72 (1991).

M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications, J. T. Turner, ed. (U. Manchester Press, Swansea, UK), pp. IL3.1–IL3.17.

Deblén, H.

H. Deblén, P. A. Öberg, “Frequency stabilization of multimode helium–neon lasers in laser Doppler flowmetry,” Med. Biol. Eng. Comp. 29, 470–474 (1991).
[CrossRef]

Dougherty, G.

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, R. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurements using different lasers,” Med Biol. Eng. Comp. 26, 415–419 (1988).
[CrossRef]

Duteil, L.

L. Duteil, J. C. Bernengo, W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE Trans. Biomed. Eng. BME-32, 439–447 (1985).
[CrossRef]

Folger, R. L.

R. W. Wunderlich, R. L. Folger, D. B. Giddon, B. R. Ware, “Laser Doppler blood flow meter and optical plethysmograph,” Rev. Sci. Instrum. 51, 1258–1262 (1980).
[CrossRef]

Giddon, D. B.

R. W. Wunderlich, R. L. Folger, D. B. Giddon, B. R. Ware, “Laser Doppler blood flow meter and optical plethysmograph,” Rev. Sci. Instrum. 51, 1258–1262 (1980).
[CrossRef]

Graaff, R.

Greve, J.

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Monte Carlo simulations and measurements of signals in laser Doppler flowmetry on human skin,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum Eng. 1431, 63–72 (1991).

M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications, J. T. Turner, ed. (U. Manchester Press, Swansea, UK), pp. IL3.1–IL3.17.

Gush, R. J.

R. J. Gush, T. A. King, “Investigations and improved performance of optical fibre probes in laser Doppler blood flow measurements,” Med. Biol. Eng. Comp. 25, 391–396 (1987).
[CrossRef]

Hermsen, R. G. A. M.

Jacques, S. L.

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1422, 3–13 (1991).

Jentink, H. W.

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications, J. T. Turner, ed. (U. Manchester Press, Swansea, UK), pp. IL3.1–IL3.17.

Keijzer, M.

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1422, 3–13 (1991).

King, T. A.

R. J. Gush, T. A. King, “Investigations and improved performance of optical fibre probes in laser Doppler blood flow measurements,” Med. Biol. Eng. Comp. 25, 391–396 (1987).
[CrossRef]

Koelink, M. H.

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Monte Carlo simulations and measurements of signals in laser Doppler flowmetry on human skin,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum Eng. 1431, 63–72 (1991).

M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications, J. T. Turner, ed. (U. Manchester Press, Swansea, UK), pp. IL3.1–IL3.17.

Lee, V. S.

V. S. Lee, L. Tarassenko, “Absorption and multiple scatteing by suspension of aligned red blood cells,” J. Opt. Soc. Am. A. 8, 1135–1141 (1991).
[CrossRef] [PubMed]

Leerkotte, B.

M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).

Nilsson, G. E.

G. E. Nilsson, “Signal processor for laser Doppler tissue flow meters,” Med. Biol. Eng. Com. 22, 343–348 (1984).
[CrossRef]

G. E. Nilsson, T. Tenland, P. A. Öberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

Nossal, R.

Obeid, A. N.

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, R. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurements using different lasers,” Med Biol. Eng. Comp. 26, 415–419 (1988).
[CrossRef]

Öberg, P. A.

H. Deblén, P. A. Öberg, “Frequency stabilization of multimode helium–neon lasers in laser Doppler flowmetry,” Med. Biol. Eng. Comp. 29, 470–474 (1991).
[CrossRef]

G. E. Nilsson, T. Tenland, P. A. Öberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

Rolfe, R.

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, R. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurements using different lasers,” Med Biol. Eng. Comp. 26, 415–419 (1988).
[CrossRef]

Schalla, W.

L. Duteil, J. C. Bernengo, W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE Trans. Biomed. Eng. BME-32, 439–447 (1985).
[CrossRef]

Shepherd, A. P.

Sloot, P. M. A.

Smits, T. M.

Steinke, J. M.

Stern, M. D.

M. D. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature (London) 254, 56–58 (1975).
[CrossRef]

Suichies, H. E.

H. E. Suichies, “Laser Doppler flowmetry in newborn infants,” Ph.D. dissertation (University of Groningen, Groningen, The Netherlands, 1990).

Tarassenko, L.

V. S. Lee, L. Tarassenko, “Absorption and multiple scatteing by suspension of aligned red blood cells,” J. Opt. Soc. Am. A. 8, 1135–1141 (1991).
[CrossRef] [PubMed]

Tenland, T.

G. E. Nilsson, T. Tenland, P. A. Öberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

van der Plas, D.

van Spijker, J.

Ware, B. R.

R. W. Wunderlich, R. L. Folger, D. B. Giddon, B. R. Ware, “Laser Doppler blood flow meter and optical plethysmograph,” Rev. Sci. Instrum. 51, 1258–1262 (1980).
[CrossRef]

Wunderlich, R. W.

R. W. Wunderlich, R. L. Folger, D. B. Giddon, B. R. Ware, “Laser Doppler blood flow meter and optical plethysmograph,” Rev. Sci. Instrum. 51, 1258–1262 (1980).
[CrossRef]

Zijlstra, W. G.

Zijp, J. R.

Appl. Opt.

R. F. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
[CrossRef] [PubMed]

F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
[CrossRef] [PubMed]

J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

G. E. Nilsson, T. Tenland, P. A. Öberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

L. Duteil, J. C. Bernengo, W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE Trans. Biomed. Eng. BME-32, 439–447 (1985).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A.

V. S. Lee, L. Tarassenko, “Absorption and multiple scatteing by suspension of aligned red blood cells,” J. Opt. Soc. Am. A. 8, 1135–1141 (1991).
[CrossRef] [PubMed]

Med Biol. Eng. Comp.

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, R. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurements using different lasers,” Med Biol. Eng. Comp. 26, 415–419 (1988).
[CrossRef]

Med. Biol. Eng. Com.

G. E. Nilsson, “Signal processor for laser Doppler tissue flow meters,” Med. Biol. Eng. Com. 22, 343–348 (1984).
[CrossRef]

Med. Biol. Eng. Comp.

H. Deblén, P. A. Öberg, “Frequency stabilization of multimode helium–neon lasers in laser Doppler flowmetry,” Med. Biol. Eng. Comp. 29, 470–474 (1991).
[CrossRef]

R. J. Gush, T. A. King, “Investigations and improved performance of optical fibre probes in laser Doppler blood flow measurements,” Med. Biol. Eng. Comp. 25, 391–396 (1987).
[CrossRef]

Nature (London)

M. D. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature (London) 254, 56–58 (1975).
[CrossRef]

Rev. Sci. Instrum.

R. W. Wunderlich, R. L. Folger, D. B. Giddon, B. R. Ware, “Laser Doppler blood flow meter and optical plethysmograph,” Rev. Sci. Instrum. 51, 1258–1262 (1980).
[CrossRef]

Other

H. E. Suichies, “Laser Doppler flowmetry in newborn infants,” Ph.D. dissertation (University of Groningen, Groningen, The Netherlands, 1990).

S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1422, 3–13 (1991).

M. H. Koelink, F. F. M. de Mul, B. Leerkotte, J. Greve, H. W. Jentink, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Signal processing for a laser Doppler perfusion meter,” Signal Process. (to be published).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications, J. T. Turner, ed. (U. Manchester Press, Swansea, UK), pp. IL3.1–IL3.17.

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Monte Carlo simulations and measurements of signals in laser Doppler flowmetry on human skin,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum Eng. 1431, 63–72 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic drawing of a prototype of the dual-laser Doppler blood flowmeter. The probe has a diameter of 12 mm and a height of 10 mm. The distance between the detecting fibers and the 633-nm source fiber is approximately 100 μm. The distance between the fibers (dashed circle) and the photodiode is approximately 2 mm. The diameter of the dashed circle is in reality only 0.7 mm. In new designs the He–Ne laser is replaced by a diode laser at 633 nm and the lasers are incorporated into the probe (in doing so the use of fibers is avoided).12

Fig. 2
Fig. 2

Measured signal spectrum on the left index finger tip with (lower) and without (upper) occlusion for 633 nm at the fiber detector site.

Fig. 3
Fig. 3

Measured signal spectrum on the left index finger tip with (lower) and without (upper) occlusion for 800 nm at the photodiode detector site.

Fig. 4
Fig. 4

As in Fig. 3 but for 633 nm at the fiber detectors. Note the difference in frequency scale.

Fig. 5
Fig. 5

Measured signal on the left finger tip as a function of time for 633 nm at the fiber detector site. Shown are the variables R, F, and D of Eq. (1). In the figure the effect of an occlusion can be seen. The arrows indicate the beginning and the end of the occlusion. The heartbeat is most apparent in D. The variables R and D have been translated over 100 and 60 units, respectively, to fit into the graph.

Fig. 6
Fig. 6

Measured signal as in Fig. 5 but for 800 nm at the photodiode detector site. In R the heartbeat fluctuations can clearly be seen. The variable D has been translated over 40 units to fit into the graph.

Fig. 7
Fig. 7

Monte Carlo simulations of the logarithm of the intensity of the backscattered light as a function of the distance to the source. The medium is semi-infinite. The N.A.’s of the detector source. The medium are 1 (○) and 0.2 (△).

Fig. 8
Fig. 8

Frequency distribution of a set of photons as a result of one of the Monte Carlo simulations as mentioned in the text.

Fig. 9
Fig. 9

Spectral power density of a detector signal calculated from the photon frequency distribution given in Fig. 8.

Fig. 10
Fig. 10

Distribution of the amount of Doppler scatter events per photon for 633 nm (△) at the fiber detector site and for 800 nm (○) at the photodiode detector site. Additonal explanation is given in the text.

Fig. 11
Fig. 11

Distribution of the amount of photons as a function of the average scatter depth for 633 nm (△) and 800 nm (○). Additional explanation is given in the text.

Tables (6)

Tables Icon

Table 1 Scattering and Absorption Parameters of the Skin Layers

Tables Icon

Table 2 Optical Properties of (Fully Oxygenated) Blood Cells

Tables Icon

Table 3 Results of Monte Carlo Simulationsa

Tables Icon

Table 4 Results of Monte Carlo Simulations with Zero Velocity of Blood Cells in the Dermis-1 Layer

Tables Icon

Table 5 Results of Monte Carlo Simulations for Determination of the Spatial Resolution

Tables Icon

Table 6 Results of Monte Carlo Simulations with Greater Absorption in the Epidermis

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R = F D = 0 ω 2 S ( ω ) d ω 0 S ( ω ) d ω .
R = 0 ω S ( ω ) d ω 0 S ( ω ) d ω .
f ( ϑ ) = 1 4 π 1 - g 2 ( 1 + g 2 - 2 g cos ϑ ) 3 / 2 .
S ( ω ) = S ( i Δ ω ) = C β | j = 0 j = ( max - i ) a j a j + i | 2 ,
S ( ω ) = S ( i Δ ω ) = C β N 0 N i .
Δ f = k v n π sin ( ϑ / 2 ) 2 π A ( j ) ,
A ( j ) = 1.000 for j = 1 = 0.889 j for j 2.
F s c = k v n π sin ( ϑ / 2 ) 2 π j = 0 j max A ( j ) N j Σ N j ,

Metrics